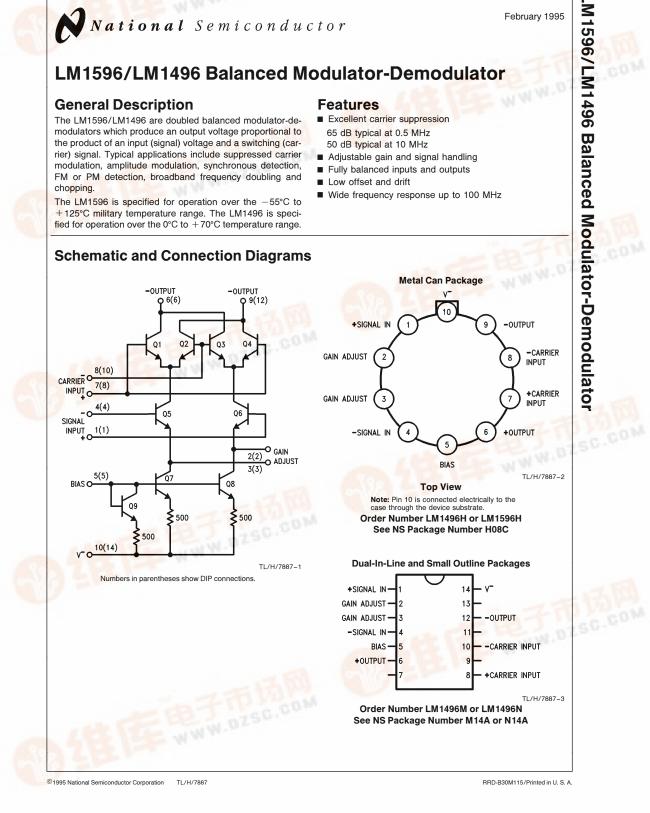
February 1995

National Semiconductor

LM1596/LM1496 Balanced Modulator-Demodulator


General Description

Features

The LM1596/LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

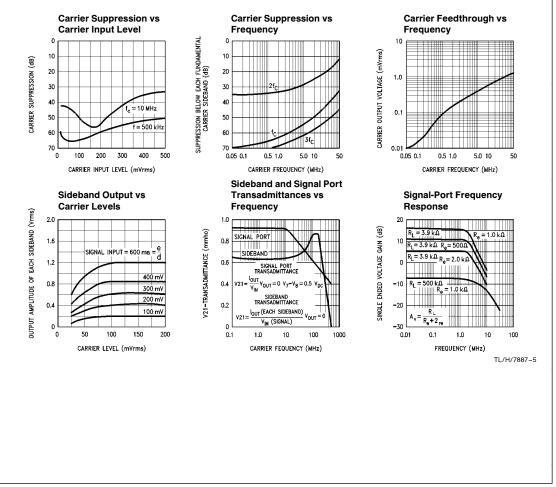
The LM1596 is specified for operation over the -55° C to +125°C military temperature range. The LM1496 is specified for operation over the 0° C to $+70^{\circ}$ C temperature range.

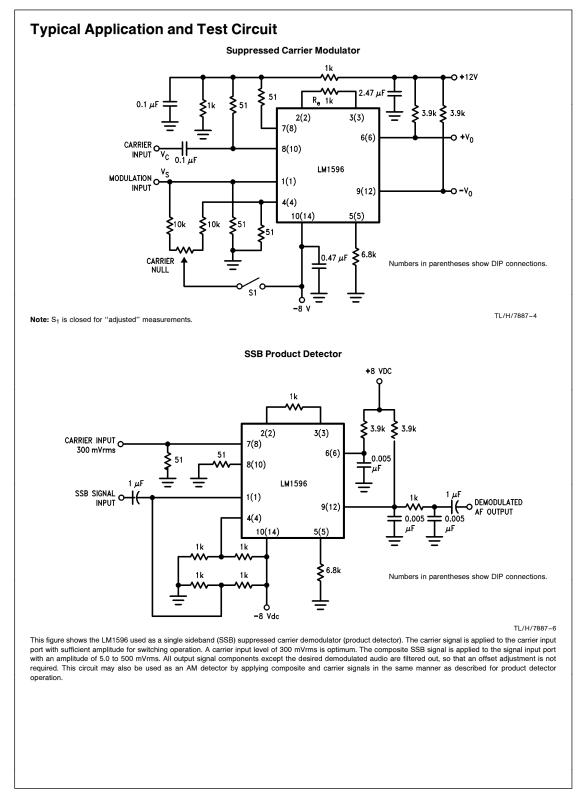
- Excellent carrier suppression 65 dB typical at 0.5 MHz
- 50 dB typical at 10 MHz
- Adjustable gain and signal handling Fully balanced inputs and outputs
- Low offset and drift ■ Wide frequency response up to 100 MHz

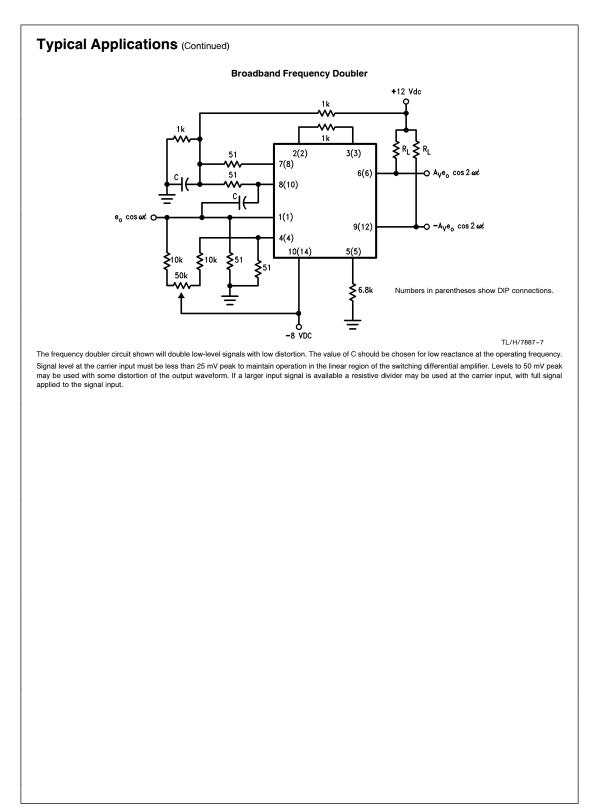
Absolute Maximum Rati If Military/Aerospace specified dev please contact the National Sem Office/Distributors for availability and	ices are required, niconductor Sales	Soldering Information Dual-In-Line Package Soldering (10 seconds) 260°C 					
Internal Power Dissipation (Note 1) Applied Voltage (Note 2) Differential Input Signal $(V_7 - V_8)$ Differential Input Signal $(V_4 - V_1)$	500 mW 30V ±5.0V ±(5+I ₅ R ₀)V	 Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds) See AN-450 "Surface Mounting Methods 	215°C 220°C and their effects				
Input Signal ($V_2 - V_1, V_3 - V_4$) Bias Current (I ₅) Operating Temperature Range LM1596 LM1496 Storage Temperature Range		on Product Reliability" for other methods face mount devices.	of soldering sur-				

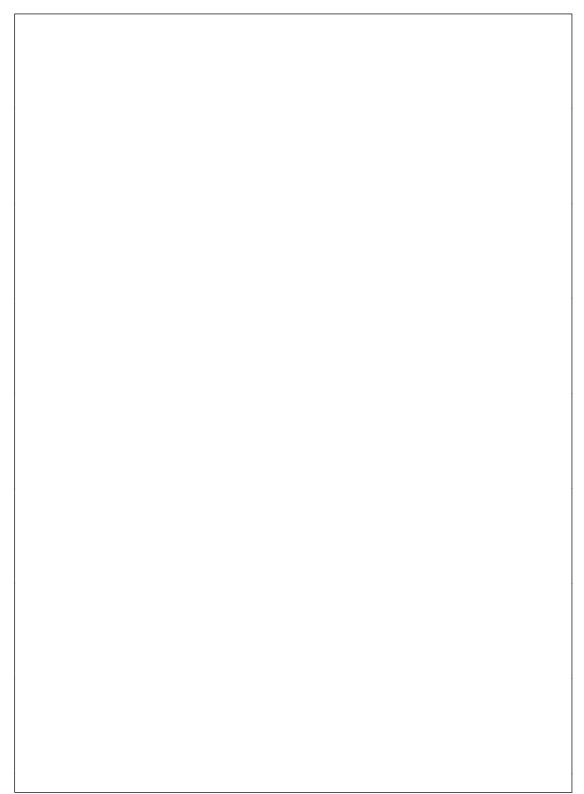
 $\label{eq:Electrical Characteristics} \textbf{(} T_{A} = 25^{\circ} \text{C} \text{, unless otherwise specified, see test circuit)}$

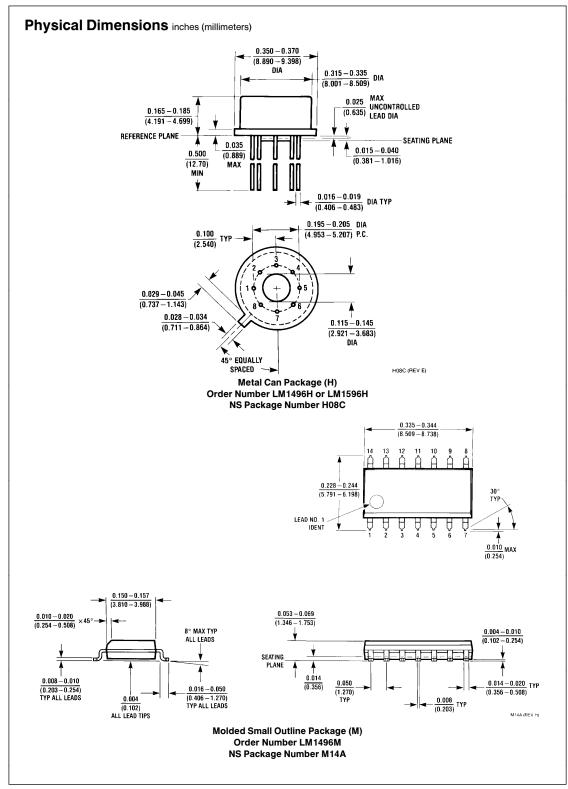
Parameter	Conditions	LM1596			LM1496			Units
i di diliotor	Conditions		Min Typ		Min	Тур	Max	Jints
Carrier Feedthrough	$V_{C} = 60 \text{ mVrms}$ sine wave		40			40		μVrm
	$f_{C} = 1.0 \text{ kHz}$, offset adjusted							
	$V_{\rm C} = 60 {\rm mVrms}$ sine wave		140			140		μVrm
	$f_{\rm C} = 10$ kHz, offset adjusted V_{\rm C} = 300 mV_{\rm pp} square wave		0.04	0.2		0.04	0.2	mVrm
	$f_{\rm C} = 1.0$ kHz, offset adjusted		0.04	0.2		0.04	0.2	
	$V_{\rm C} = 300 {\rm mV}_{\rm pp}$ square wave		20	100		20	150	mVrm
	$f_{C} = 1.0$ kHz, not offset adjusted							
Carrier Suppression	$f_S = 10 \text{ kHz}, 300 \text{ mVrms}$	50	65		50	65		dB
	$f_{\rm C} = 500 \text{ kHz}$, 60 mVrms sine wave offset adjusted		50			50		dB
	$f_S = 10 \text{ kHz}$, 300 mVrms $f_C = 10 \text{ MHz}$, 60 mVrms sine wave offset adjusted		50			50		
Transadmittance Bandwidth	$R_{\rm I} = 50\Omega$		300			300		MHz
Tansautilitance Danuwiulli	Carrier Input Port, $V_{\rm C} = 60$ mVrms sine wave							
	$f_S = 1.0 \text{ kHz}$, 300 mVrms sine wave							
	Signal Input Port, $V_S = 300 \text{ mVrms}$ sine wave		80			80		MHz
<u></u>	$V_7 - V_8 = 0.5$ Vdc							
Voltage Gain, Signal Channel	$V_{S} = 100 \text{ mVrms}, f = 1.0 \text{ kHz}$ $V_{7} - V_{8} = 0.5 \text{ Vdc}$	2.5	3.5		2.5	3.5		V/V
Input Resistance, Signal Port	f = 5.0 MHz							
	$V_7 - V_8 = 0.5 $ Vdc		200			200		kΩ
Input Capacitance, Signal Port	f = 5.0 MHz		2.0			2.0		pF
	$V_7 - V_8 = 0.5 Vdc$		2.0			2.0		
Single Ended Output Resistance	f = 10 MHz		40			40		kΩ
Single Ended Output	f = 10 MHz		5.0			5.0		pF
Capacitance								- "
Input Bias Current	$(I_1 + I_4)/2$		12	25		12	30	μΑ
Input Bias Current	$(I_7 + I_8)/2$		12	25		12	30	μΑ
Input Offset Current	$(I_1 - I_4)$		0.7	5.0		0.7	5.0	μΑ
Input Offset Current	(I ₇ - I ₈)		0.7	5.0		5.0	5.0	μΑ
Average Temperature	$(-55^{\circ}C < T_{A} < +125^{\circ}C)$		2.0					nA/°C
Coefficient of Input	(0°C < T _A < +70°C)					2.0		nA/°C
Offset Current								
Output Offset Current	$(I_6 - I_9)$		14	50		14	60	μΑ
Average Temperature	$(-55^{\circ}C < T_A < +125^{\circ}C)$ $(0^{\circ}C < T_A < +70^{\circ}C)$		90			90		nA/°0 nA/°0
Coefficient of Output Offset Current	$ 00 \times 1_A \times \pm 7000\rangle$					90		
	1	I	I		I		I	I

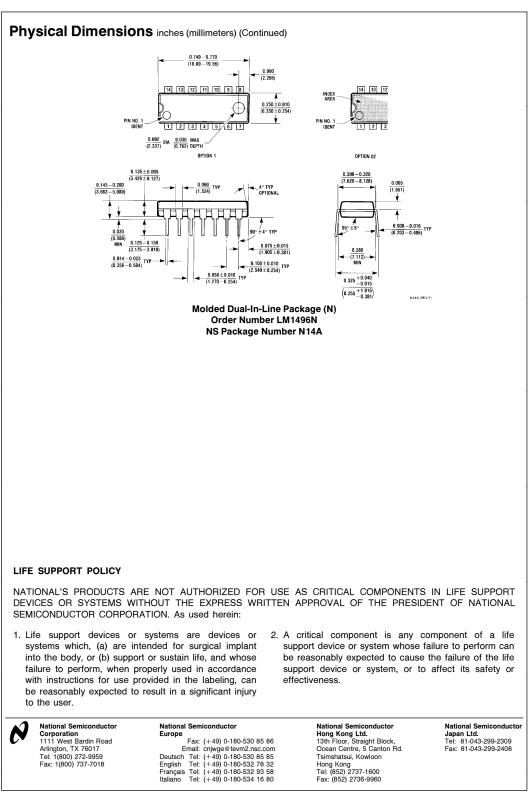

Parameter	Conditions	LM1596			LM1496			Units
		Min	Тур	Max	Min	Тур	Max	
Signal Port Common Mode Input Voltage Range	$f_S = 1.0 \text{ kHz}$		5.0			5.0		V _{p-p}
Signal Port Common Mode Rejection Ratio	$V_7-V_8=0.5\text{Vdc}$		-85			-85		dB
Common Mode Quiescent Output Voltage			8.0			8.0		Vdc
Differential Output Swing Capability			8.0			8.0		V _{p-p}
Positive Supply Current	$(I_6 + I_g)$		2.0	3.0		2.0	3.0	mA
Negative Supply Current	(I ₁₀)		3.0	4.0		3.0	4.0	mA
Power Dissipation			33			33		mW


Note 1: LM1596 rating applies to case temperatures to $+125^{\circ}$ C; derate linearly at 6.5 mW/°C for ambient temperature above 75°C. LM1496 rating applies to case temperatures to $+70^{\circ}$ C.


Note 2: Voltage applied between pins 6-7, 8-1, 9-7, 9-8, 7-4, 7-1, 8-4, 6-8, 2-5, 3-5.


Note 3: Refer to rets1596x drawing for specifications of military LM1596H versions.


Typical Performance Characteristics



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.