S2102 #### **FEATURES** - 1062 MHz (Fibre Channel) operating rate - Half rate operation - Dual Transmitter with phase-locked loop (PLL) clock synthesis from low speed reference - ANSI x3T11 Fibre Channel Compatible - Dual Receiver PLL provides clock and data recovery - Internally series terminated TTL outputs - Low-jitter serial PECL interface - · Individual local loopback control - JTAG 1149.1 Boundary scan on low speed I/O signals - · Interfaces with coax, twinax, or fiber optics - Single +3.3V supply, 1.85 W power dissipation - Compact 21mm x 21mm 156 TBGA package #### **APPLICATIONS** - Workstation - Frame buffer - · Switched networks - · Data broadcast environments - Proprietary extended backplanes #### GENERAL DESCRIPTION The S2102 facilitates high-speed serial transmission of data in a variety of applications including Fibre Channel, serial backplanes, and proprietary point to point links. The chip provides two separate transceivers which are operated individually for a data capacity of >2 Gbps. Each bi-directional channel provides parallel to serial and serial to parallel conversion, clock generation/recovery, and framing. The on-chip transmit PLL synthesizes the high-speed clock from a low-speed reference. The on-chip dual receive PLL is used for clock recovery and data re-timing on the two independent data inputs. The transmitter and receiver each support differential PECL-compatible I/O for copper or fiber optic component interfaces with excellent signal integrity. Local loopback mode allows for system diagnostics. The chip requires a 3.3V power supply and dissipates 1.85 watts. Figure 1 shows the S2102 and S2002 in a Fibre Channel application. Figure 2 summarizes, the input/output signals of the device. Figures 3 and 4 show the transmit and receive block diagrams, respectively. Figure 1. Typical Dual Fibre Channel Application Figure 2. S2102 Input/Output Diagram Figure 3. Transmitter Block Diagram Figure 4. Receiver Block Diagram #### TRANSMITTER DESCRIPTION The transmitter section of the S2102 contains a single PLL which is used to generate the serial rate transmit clock for all transmitters. Two channels are provided with a variety of options regarding input clocking and loopback. The transmitters operate at 1.062 GHz, 10 or 20 times the reference clock frequency. #### **Data Input** The S2102 has been designed to simplify the parallel interface data transfer and provides the utmost in flexibility regarding clocking of parallel data. The S2102 incorporates a unique FIFO structure on both the parallel inputs and the parallel outputs which enables the user to provide a "clean" reference source for the PLL and to accept a separate external clock which is used exclusively to reliably clock data into the device. Data can also be clocked in using the REFCLK. Data is input to each channel of the S2102 nominally as a 10 bit wide word. An input FIFO and a clock input, TBCx, are provided for each channel of the Table 1. Input Modes | TMODE | Operation | |-------|---| | 0 | REFCLK Mode. REFCLK used to clock data into FIFOs for all channels. | | 1 | TBC Mode. TBCx used to clock data into FIFOs for all channels. | Note that internal synchronization of FIFOs is performed upon de-assertion of RESET. Figure 5. DIN Data Clocking with TBC S2102. The device can operate in two different modes. The S2102 can be configured to use either the TCLKx (TCLK MODE) input or the REFCLK input (REFCLK MODE). In TCLK or REFCLK mode, 10 bits of data are clocked into its FIFO with the TBCx provided with each 10 bits. Table 1 provides a summary of the input modes of the S2102. Operation in the TBC MODE makes it easier for users to meet the relatively narrow setup and hold time window required by the 106.25 Mbps 10-bit interface. The TBC signal is used to clock the data into an internal holding register and the S2102 synchronizes its internal data flow to ensure stable operation. However, regardless of the clock mode, REFCLK is always the VCO reference clock. This facilitates the provision of a clean reference clock resulting in minimum jitter on the serial output. The TBC must be frequency locked to REFCLK, but may have an arbitrary phase relationship. Adjustment of internal timing of the S2102 is performed during reset. Once synchronized, the user must ensure that the timing of the TBC signal does not change by more than \pm 3 ns relative to the REFCLK. Figure 5 demonstrates the flexibility afforded by the S2102. A low jitter reference is provided directly to the S2102 at either 1/10 or 1/20 the serial data rate. This ensures minimum jitter in the synthesized clock used for serial data transmission. A system clock output at the parallel word rate, TCLKO, is derived from the PLL and provided to the upstream circuit as a system clock. The frequency of this output is constant at the parallel word rate, 1/10 the serial data Figure 6. FC DIN Clocking with REFCLK #### **DUAL FIBRE CHANNEL DEVICE** Table 2. Data to 8B/10B Alphabetic Representation | | | | | С | ata | Byt | е | | | | |------------------------------------|---|---|---|---|-----|-----|---|---|---|---| | DIN[0:9] or DOUT[0:9] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 8B/10B Alphanumeric Representation | а | b | С | d | е | i | f | g | h | j | Table 3. Operating Rates | RATE | CLKSEL | REFCLK
Frequency | Serial
Output Rate | TCLKO
Frequency | |------|--------|---------------------|-----------------------|--------------------| | 0 | 0 | 106.25 MHz | 1062.5 MHz | 106.25 MHz | | 0 | 1 | 53.125 MHz | 1062.5 MHz | 106.25 MHz | | 1 | 0 | 53.125 MHz | 531.25 MHz | 53.125 MHz | | 1 | 1 | 26.563 MHz | 531.25 MHz | 53.125 MHz | rate, regardless of whether the reference is provided at 1/10 or 1/20 the serial data rate. This clock can be buffered as required without concern about added delay. There is no phase requirement between TCLKO and TBCx, which is provided back to the S2102, other than that they remain within \pm 3ns of the phase relationship established at reset. The S2102 also supports the traditional REFCLK clocking found in many Fibre Channel applications and is illustrated in Figure 6. #### **Half Rate Operation** The S2102 supports full and half rate operation for all modes of operation. When RATE is LOW, the S2102 serial data rate equals the VCO frequency. When RATE is HIGH, the VCO is divided by 2 before being provided to the chip. Thus the S2102 can support Fibre Channel and serial backplane functions at both full and half the VCO rate. See Table 3. #### **Parallel to Serial Conversion** The 10-bit parallel data handled by the S2102 device should be from a DC-balanced encoding scheme, such as the 8B/10B transmission code, in which information to be transmitted is encoded, 8 bits at a time, into a 10-bit transmission character and must be compliant with ANSI X3.230 FC-PH (Fibre Channel Physical and Signaling Interface). The 8B/10B transmission code includes serial encoding and decoding rules, special characters, and error control. Information is encoded, 8 bits at a time, into a 10 bit transmission character. The characters defined by this code ensure that short run lengths and enough transitions are present in the serial bit stream to make clock recovery possible at the receiver. The encoding also greatly increases the likelihood of detecting any single or multiple errors that might occur during the transmission and reception of data¹. Table 2 identifies the mapping of the 8B/10B characters to the data inputs of the S2102. The S2102 will serialize the parallel data for each channel and will transmit bit "a" or DIN[0] first. #### Frequency Synthesizer (PLL) The S2102 synthesizes a serial transmit clock from the reference signal. Upon startup, the S2102 will obtain phase and frequency lock within 2500 bit times after the start of receiving reference clock inputs. Reliable locking of the transmit PLL is assured, but a lock-detect output is NOT provided. #### **Reference Clock Input** The reference clock input must be supplied with a low-jitter clock source. All reference clocks in a system must be within 200 ppm of each other to ensure that the clock recovery units can lock to the serial data. The frequency of the reference clock must be either 1/10 the serial data rate, CLKSEL = 0, or 1/20 the serial data rate, CLKSEL=1. In both cases the frequency of the parallel word rate output, TCLKO, is constant at 1/10 the serial data rate. See Table 3. #### **Serial Data Outputs** The S2102 provides LVPECL level serial outputs. The serial outputs do not require output pulldown resistors. Outputs are designed to perform optimally when AC-coupled. #### Transmit FIFO Initialization The transmit FIFO must be initialized after stable delivery of data and TBC to the parallel interface, and before entering the normal operational state of the circuit. FIFO initialization is performed upon the de-assertion of the RESET signal. TCLKO will operate normally regardless of the state of RESET. ^{1.} A.X. Widner and P.A. Franaszek, "A Byte-Oriented DC Balanced (0,4) 8B/10B Transmission Code," IBM Research Report RC9391, May 1982. $\mathcal{A}\mathsf{MCC}$ #### RECEIVER DESCRIPTION Each receiver channel is designed to implement a Serial Backplane receiver function through the physical layer. A block diagram showing the basic function is provided in Figure 4. Whenever a signal is present, the receiver attempts to recover the serial clock from the received data stream. After acquiring bit synchronization, the S2102 searches the serial bit stream for the occurrence of a K28.5 character on which to perform word synchronization. Once synchronization on both bit and word boundaries is achieved, the receiver provides the word-aligned data on its parallel outputs. #### **Data Input** A differential input receiver is provided for each channel of the S2102. Each channel has a loopback mode in which the serial data from the transmitter replaces external serial data. The loopback function for each channel is enabled by its respective LPEN input. The high speed serial inputs to the S2102 are internally biased to VDD-1.3V. All that is required externally are AC-coupling and line-to-line differential termination. #### **Clock Recovery Function** Clock recovery is performed on the input data stream for each channel of the S2102. The receiver PLL has been optimized for the anticipated needs of Serial Backplane systems. A simple state machine in the clock recovery macro decides whether to acquire lock from the serial data input or from the reference clock. The decision is based upon the frequency and run length of the serial data inputs. If at any time the Table 4. Lock to Reference Frequency Criteria | Current Lock
State | PLL Frequency
(vs. REFCLK) | New Lock State | |-----------------------|-------------------------------|----------------| | | < 488 ppm | Locked | | Locked | 488 to 732 ppm | Undetermined | | | > 732 ppm | Unlocked | | | < 244 ppm | Locked | | Unlocked | 244 to 366 ppm | Undetermined | | | > 366 ppm | Unlocked | frequency or run length checks are violated, the state machine forces the VCO to lock to the reference clock. This allows the VCO to maintain the correct frequency in the absence of data. The "lock to reference" frequency criteria ensure that the S2102 will respond to variations in the serial data input frequency (compared to the reference frequency). The new lock state is dependent upon the current lock state, as shown in Table 4. The run-length criteria ensure that the S2102 will respond appropriately and quickly to a loss of signal. The run-length checker flags a condition of consecutive ones or zeros across 12 parallel words. Thus 119 or less consecutive ones or zeros does not cause signal loss, 129 or more causes signal loss, and 120 - 128 may or may not, depending on how the data aligns across byte boundaries. If both the off-frequency detect circuitry test and the run-length test are satisfied, the CRU will attempt to lock to the incoming data. It is possible for the run length test to be satisfied due to noise on the inputs, even if no signal is present. In this case the receiver VCO will maintain frequency accuracy to within 100 ppm of the target rate as determined by REFCLK. In any transfer of PLL control from the serial data to the reference clock, the RBC1/0x outputs remain phase continuous and glitch free, assuring the integrity of downstream clocking. #### **Reference Clock Input** A single reference clock, which serves both transmitter and receiver, must be provided from a low jitter clock source. The frequency of the received data stream (divided-by-10 or -20) must be within 200 ppm of the reference clock to ensure reliable locking of the receiver PLL. #### Serial to Parallel Conversion Once bit synchronization has been attained by the S2102 CRU, the S2102 must synchronize to the 10 bit word boundary. Word synchronization in the S2102 is accomplished by detecting and aligning to the 8B/10B K28.5 codeword. The S2102 will detect and byte-align to either polarity of the K28.5. Each channel of the S2102 will detect and align to a K28.5 anywhere in the data stream. For TCLK ot REFCLK mode operation, the presence of a K28.5 is indicated for each channel by the assertion of the COM_DETx signal. #### **Data Output** Data is output on the DOUT[0:9] outputs. The COM_DETx signal is used to indicate the reception of a valid K28.5 character. The S2102 TTL outputs are optimized to drive 65Ω line impedances. Internal source matching provides good performance on unterminated lines of reasonable length. #### **Parallel Output Clock Rate** Two output clock modes are supported, as shown in Table 5. When CMODE is High, a complementary TTL clock at the data rate is provided on the RBC1/0x outputs. Data should be clocked on the rising edge of RBC1x. When CMODE is Low, a complementary TTL clock at half the data rate is provided. Data should be latched on the rising edge of RBC1x and the rising edge of RBC0x. In Fibre Channel applications, multiple consecutive K28.5 characters cannot be generated. However, for serial backplane applications this can occur. The S2102 must be able to operate properly when multiple K28.5 characters are received. After the first K28.5 is detected and aligned, the RBC1/0x clock will operate without glitches or loss of cycles. #### **Receiver Output Clocking** The S2102 parallel output clock source is determined by the TMODE selection. When REFCLK clocking is selected (TMODE = Low), the parallel output clocks (RCxP/N) are sourced from the TCLKA input. When TCLK clocking is selected (External Clocking Mode), the parallel output clocks are derived from the recovered clock from each channel. Table 5A describes the receiver output clocking options available. When TCLKA is the output clock source, REFCLK and TCLKA must equal the parallel word rate (CLKSEL = Low). Additionally, the recovered clocks and the clock input on TCLKA must be frequency locked in order to avoid overflow/underflow of the internal FIFOs. The propagation delay between TCLKA and DOUTx, listed in Table 21, shows that the phase delay between TCLKA and the RCxP/N outputs may vary more than a bit time based on process variation. The recommended clocking configuration for external clocking mode (REFCLK input clocking) is shown in Figure 7. TCLKA is sourced from TCLKO, which is frequency locked to the Reference clock input. Table 5. Output Clock Mode | Mode | CMODE | RBC1/0x Freq | |-----------------|-------|--------------| | Half Clock Mode | 0 | 53.125 MHz | | Full Clock Mode | 1 | 106.25 MHz | Table 5A. S2102 Data Clocking | TMODE | Input Clock
Source | Output Clock
Source | |-------|-----------------------|------------------------| | 0 | REFCLK | TBCA | | 1 | TBCx | RBCx | Figure 7. External Receiver Clocking #### **OTHER OPERATING MODES** #### **Operating Frequency Rate** The S2102 is designed to operate at the Fibre Channel rate of 1.062 GHz. #### **Loopback Mode** When loopback mode is enabled, the serial data from the transmitter is provided to the serial input of the receiver, as shown in Figure 8. This provides the ability to perform system diagnostics and off-line testing of the interface to verify the integrity of the serial channel. Loopback mode is enabled independently for each channel using its respective loopback-enable input, LPEN. #### **Test Modes** The RESET pin is used to initialize the Transmit FIFOs and must be asserted (LOW) prior to entering the normal operational state (see section Transmit FIFO Initialization). Figure 8. S2102 Diagnostic Loopback Operation Note: Serial output data remains active during loopback operation to enable other system tests to be performed. #### **JTAG TESTING** The JTAG implementation for the S2102 is compliant with the IEEE1149.1 requirements. JTAG is used to test the connectivity of the pins on the chip. The TAP, (Test Access Port), provides access to the test logic of the chip. When TRST is asserted the TAP is initialized. TAP is a state machine that is controlled by TMS. The test instruction and data are loaded through TDI on the rising edge of TCK. When TMS is high the test instruction is loaded into the instruction register. When TMS is low the test data is loaded into the data register. TDO changes on the falling edge of TCK. All input pins, including clocks, that have boundary scan are observe only. They can be sampled in either normal operational or test mode. All output pins that have boundary scan, are observe and control. They can be sampled as they are driven out of the chip in normal operational mode, and they can be driven out of the chip in test mode using the Extest instruction. Since JTAG testing operates only on digital signals there are some pins with analog signals that JTAG does not cover. The JTAG implementation has the three required instruction, Bypass, Extest, and Sample/Preload. | Instruction | Code | |----------------|------| | BYPASS | 11 | | EXTEST | 00 | | SAMPLE/PRELOAD | 01 | | ID CODE | 10 | #### **JTAG Instruction Description:** The BYPASS register contains a single shift-register stage and is used to provide a minimum-length serial path between the TDI and TDO pins of a component when no test operation of that component is required. This allows more rapid movement of test data to and from other components on a board that are required to perform test operations. The EXTEST instruction allows testing of off-chip circuitry and board level interconnections. Data would typically be loaded onto the latched parallel outputs of boundary-scan shift-register stages using the SAMPLE/PRELOAD instruction prior to selection of the EXTEST instruction. The SAMPLE/PRELOAD instruction allows a snapshot of the normal operation of the component to be taken and examined. It also allows data values to be loaded onto the latched parallel outputs of the boundary-scan shift register prior to selection of the other boundary-scan test instructions. The following table provides a list of the pins that are JTAG tested. Each port has a boundary scan register (BSR), unless otherwise noted. The following features are described: the JTAG mode of each register (input, output2, or internal (refers to an internal package pin)), the direction of the port if it has a boundary scan register (in or out), and the position of this register on the scan chain. #### Table 6. JTAG Pin Assignments | S2102
Pin Name | Core_Scan Port Name | | | | | |-------------------|--------------------------|----------|-------|-------|--| | TESTMODE2 | testmode_2 | Input | 0 - | | | | CMODE | cmode | Input | 1 | - | | | TESTMODE | testmode_0 | Input | 2 | - | | | | | Internal | 3 | - | | | LPENB | Ipenb | Input | 4 | - | | | | | Internal | 5 | - | | | LPENA | Ipena | Input | 6 | - | | | CLKSEL | clksel | Input | 7 | - | | | TMODE | tmode | Input | 8 | - | | | | | Internal | 9 | - | | | RESET | reset | Input | 10 | - | | | REFCLK | refclk | Input | 11 | - | | | TCLKO | transmit_clk_
buf_out | Output2 | - | 12 | | | | | Internal | 13-22 | - | | | TESTMODE1 | testmode_1 | Input | 23 | - | | | DINB9 | tdatain_b (9) | Input | 24 | - | | | DINB8 | tdatain_b (8) | Input | 25 | - | | | DINB7 | tdatain_b (7) | Input | 26 | - | | | DINB6 | tdatain_b (6) | Input | 27 | - | | | DINB5 | tdatain_b (5) | Input | 28 | - | | | DINB4 | tdatain_b (4) | Input | 29 | - | | | DINB3 | tdatain_b (3) | Input | 30 | - | | | DINB2 | tdatain_b (2) | Input | 31 | - | | | DINB1 | tdatain_b (1) | Input | 32 | - | | | DINB0 | tdatain_b (0) | Input | 33 | - | | | ТВСВ | tclkb | Input | 34 | - | | | | | Internal | 35-45 | - | | | DINA9 | tdatain_a (9) | Input | 46 | - | | | DINA8 | tdatain_a (8) | Input | 47 | - | | | DINA7 | tdatain_a (7) | Input | 48 | - | | | DINA6 | tdatain_a (6) | Input | 49 | - | | | DINA5 | tdatain_a (5) | Input | 50 | - | | | DINA4 | tdatain_a (4) | Input | 51 | - | | | DINA3 | tdatain_a (3) | Input | 52 | - | | | DINA2 | tdatain_a (2) | Input | 53 | - | | | DINA1 | tdatain_a (1) | Input | 54 | - | | | DINA0 | tdatain_a (0) | Input | 55 | - | | | TBCA | tclka | Input | 56 | - | | | | | Internal | - | 57-69 | | | RBC1B | rcbp | Output2 | - | 70 | | | RBC0B | rcbn | Output2 | - | 71 | | | DOUTB7 | rdataout_b (7) | Output2 | - | 72 | | | DOUTB6 | rdataout_b (6) | Output2 | - | 73 | | | DOUTB5 | rdataout_b (5) | Output2 | - | 74 | | | DOUTB4 | rdataout_b (4) | Output2 | - | 75 | | | DOUTB3 | rdataout_b (3) | Output2 | - | 76 | | | | | - | | | | | S2102
Pin Name | Core_Scan Port Name | JTAG
Mode | Rou
In | ting
Out | |-------------------|---------------------------------|--------------|-----------|-------------| | DOUTB2 | rdataout b (2) | Output2 | - | 77 | | DOUTB1 | rdataout_b (1) | Output2 | - | 78 | | DOUTB0 | rdataout_b (0) | Output2 | - | 79 | | DOUTB9 | rdataout_b (9) | Output2 | - | 80 | | COM_DETB | eofd_b | Output2 | - | 81 | | DOUTB8 | rdataout_b (8) | Output2 | - | 82 | | | | Internal | - | 83-95 | | RBC1A | rcap | Output2 | - | 96 | | RBC0A | rcan | Output2 | 1 | 97 | | DOUTA9 | rdataout_a (9) | Output2 | - | 98 | | DOUTA7 | rdataout_a (7) | Output2 | 1 | 99 | | DOUTA6 | rdataout_a (6) | Output2 | 1 | 100 | | DOUTA5 | rdataout_a (5) | Output2 | - | 101 | | DOUTA4 | rdataout_a (4) | Output2 | - | 102 | | DOUTA3 | rdataout_a (3) | Output2 | - | 103 | | DOUTA2 | rdataout_a (2) | Output2 | - | 104 | | DOUTA1 | rdataout_a (1) | Output2 | - | 105 | | DOUTA0 | rdataout_a (0) | Output2 | 1 | 106 | | COM_DETA | eofd_a | Output2 | - | 107 | | DOUTA8 | rdataout_a (8) | Output2 | - | 108 | | | | Internal | - | 109 | | JTAG Control Pin | s
lave a Boundary Sca | n Register) | | | | TCK | jtag_tck | - | - | - | | TDI | jtag_tdi | - | - | - | | TDO | jtag_tdo | - | - | - | | TMS | jtag_tms | - | - | - | | TRS | jtag_trs | - | - | - | | Pins not JTAG Te | sted | | | | | TXAP | - | - | - | - | | TXAN | - | - | - | - | | TXBP | - | - | - | - | | TXBN | - | | | - | | RATE | - | - | - | - | | RXAP | - | - | - | - | | RXAN | - | - | - | - | | RXBP | - | - | - | - | | RXBN | - | - | - | - | ## **DUAL FIBRE CHANNEL DEVICE** S2102 Table 7. Transmitter Input Pin Assignment and Descriptions | Pin Name | Level | I/O | Pin # | Description | |---|-------|-----|--|---| | DINA9 DINA8 DINA7 DINA6 DINA5 DINA4 DINA3 DINA2 DINA1 DINA0 | TTL | I | T15 R13 P12 T14 R12 P11 T13 R11 T12 P10 | Transmit Data for Channel A. Parallel data on this bus is clocked in on the rising edge of TBCA or REFCLK. | | TBCA | TTL | I | R10 | Transmit Byte Clock A. When TMODE is High, this signal is used to clock Data on DINA[0:9] into the S2102. When TMODE is Low, TBCA is ignored. | | DINB9 DINB8 DINB7 DINB6 DINB5 DINB4 DINB3 DINB2 DINB1 DINB0 | TTL | I | L14
M16
M15
M14
N16
N15
N14
P16
P15
R16 | Transmit Data for Channel B. Parallel data on this bus is clocked in on the rising edge of TBCB or REFCLK. | | ТВСВ | TTL | I | P14 | Transmit Byte Clock B. When TMODE is High, this signal is used to clock Data on DINB[0:9] into the S2102. When TMODE is Low, TBCB is ignored. | Table 8. Transmitter Output Signals | Pin Name | Level | I/O | Pin # | Description | |--------------|-----------------|-----|------------|--| | TXAP
TXAN | Diff.
LVPECL | 0 | D16
E16 | High speed serial outputs for Channel A. | | TXBP
TXBN | Diff.
LVPECL | 0 | G16
F16 | High speed serial outputs for Channel B. | | TCLKO | TTL | 0 | K15 | TTL Output Clock at the Parallel data rate. This clock is provided for use by up-stream circuitry. | #### Table 9. Mode Control Signals | Pin Name | Level | I/O | Pin # | Description | |-----------|-------|-----|-------|--| | TESTMODE | TTL | I | D3 | Test Mode Control. Keep Low for normal operation. | | TESTMODE1 | TTL | Ι | L15 | Test Mode Control. Keep Low for normal operation. | | TESTMODE2 | TTL | I | C4 | Test Mode Control. Keep Low for normal operation. | | TMODE | TTL | l | A13 | Transfer Mode Control. Controls the source of the clock used to input and output data to and from the S2102. When TMODE is Low, REFCLK is used to clock data on DINx[0:9] into the S2102. TBCA is used to clock parallel data DOUTx[0:9] out of the device. When TMODE is High, the TBCx inputs are used to clock data into their respective channels. The output clocks are derived from the receivers' CRUs. | | CLKSEL | TTL | _ | B11 | REFCLK Select Input. This signal configures the PLL for the appropriate REFCLK frequency. When CLKSEL = 0, the REFCLK frequency equals the parallel word rate. When CLKSEL = 1, the REFCLK frequency is half the parallel data rate. | | REFCLK | TTL | I | J14 | Reference Clock is used for the transmit VCO and frequency check for the clock recovered from the receiver serial data. | | RESET | TTL | I | B15 | When Low, the S2102 is held in reset. The receiver PLL is forced to lock to the REFCLK. The FIFOs are initialized on the rising edge of RESET. When High, the S2102 operates normally. | | RATE | TTL | I | C11 | When Low, the S2102 operates with the serial output rate equal to the VCO frequency. When High, the S2102 operates with the VCO internally divided by 2 for all functions. | Note: All TTL inputs except REFCLK have internal pull-up networks. Table 10. Receiver Output Pin Assignment and Descriptions | Pin Name | Level | I/O | Pin # | Description | |---|-------|-----|--|--| | DOUTA9 DOUTA8 DOUTA7 DOUTA6 DOUTA5 DOUTA4 DOUTA3 DOUTA2 DOUTA1 DOUTA0 | TTL | 0 | J2
G2
L2
L1
K2
K1
J3
J1
H3
H2 | Channel A Receiver Data Outputs. Parallel data on this bus is valid on the rising edge of RBC1A in full clock mode and valid on the rising edge of both RBC1A and RBC0A in half clock mode. | | COM_DETA | TTL | 0 | G1 | Channel A Comma Detect. A High on this output indicates that a valid K28.5 has been detected and is present on the parallel data outputs DOUTA[0:9]. | | RBC1A
RBC0A | TTL | 0 | M1
L3 | Receive Byte Clocks. Parallel receive data, DOUTA[0:9] and COM_DETA are valid on the rising edge of RBC1A when in full clock mode and valid on the rising edge of both RBC1A and RBC0A in half clock mode. | | DOUTB9 DOUTB8 DOUTB7 DOUTB6 DOUTB5 DOUTB4 DOUTB3 DOUTB2 DOUTB1 DOUTB0 | TTL | 0 | P4
P2
P8
T5
R6
P6
R5
T3
P5 | Channel B Receiver Data Outputs. Parallel data on this bus is valid on the rising edge of RBC1B in full clock mode and valid on the rising edge of both RBC1B and RBC0B in half clock mode. | | COM_DETB | TTL | 0 | P3 | Channel B Comma Detect. A High on this output indicates that a valid K28.5 has been detected and is present on the parallel data outputs DOUTB[0:9]. | | RBC1B
RBC0B | TTL | 0 | R7
P7 | Receive Byte Clocks. Parallel receive data, DOUTB[0:9] and COM_DETB are valid on the rising edge of RBC1B when in full clock mode and valid on the rising edge of both RBC1B and RBC0B in half clock mode. | Table 11. Receiver Input Pin Assignment and Descriptions | Pin Name | Level | I/O | Pin # | Description | |--------------|-----------------|-----|----------|--| | RXAP
RXAN | Diff.
LVPECL | I | A3
A4 | Differential LVPECL compatible inputs for channel A. RXAP is the positive input, RXAN is the negative. Internally biased to VDD -1.3V for AC coupled applications. | | RXBP
RXBN | Diff.
LVPECL | I | A8
A9 | Differential LVPECL compatible inputs for channel B. RXBP is the positive input, RXBN is the negative. Internally biased to VDD -1.3V for AC coupled applications. | ### Table 12. Receiver Control Signals | Pin Name | Level | I/O | Pin # | Description | |----------------|-------|-----|------------|--| | LPENA
LPENB | TTL | I | C14
H14 | Loopback Enable. When Low, input source is the high speed serial input for each channel. When High, the serial output for each channel is looped back to its input. | | CMODE | TTL | I | C2 | Clock Mode Control. When Low, the parallel output clocks (RBC1/0x) rate is equal to 1/2 the data rate. When High, the parallel output clocks (RBC1/0x) rate is equal to the data rate. | #### Table 13. Power and Ground Signals | Pin Name | Qty. | Pin # | Description | | | | | | | | |---------------|------|--|--|--|--|--|--|--|--|--| | VDDA | 4 | A6, B4, B13,
C8 | Analog Power (VDD) low noise. | | | | | | | | | VSSA | 3 | A2, B8, C13 | Analog Ground (VSS). | | | | | | | | | VDD | 3 | B12, C6, C9 | Power for High Speed Circuitry (VDD). | | | | | | | | | VSS
VSSSUB | 8 | A7, A11, A12,
A14, B5, B7,
C7, C12 | Ground for High Speed Circuitry (VSS). | | | | | | | | Table 13. Power and Ground Signals (Continued) | | | | ` ,
 | | | | | |--------------|------|--|---|--|--|--|--| | Pin Name | Qty. | Pin # | Description | | | | | | PECLPWR | 4 | D15, F15, G14,
H15 | PECL Power (VDD) | | | | | | PECLGND | 2 | C16
J16 | PECL Ground (VSS) | | | | | | DIGPWR | 6 | B2, C1, D2,
J15, N1, P9 | Core Circuitry Power (VDD) | | | | | | DIGGND | 8 | C3, D1, E2,
E3, K16, R1,
T1, T11 | Core Circuitry Ground (VSS) | | | | | | TTLPWR | 8 | F1, G3, H1,
M2, P1, R4,
R8, T7 | Power for TTL I/O (VDD) | | | | | | TTLGND | 10 | E1, F2, F3, K3,
M3, N3, R2,
T2, T4, T8 | Ground for TTL I/O (VSS) | | | | | | PWR | 2 | A16
B1 | Power | | | | | | GND | 5 | K14, L16, P13,
R14, T16 | Ground | | | | | | CAP1
CAP2 | 2 | A15
B14 | Pins for external loop filter capacitor | | | | | | NC | 18 | A1, A5, B6, B9,
B16, C5, C15,
D14, E14, E15,
F14, G15, N2,
R9, R15, T6,
T9, T10 | Not Connected. Used as test pins. Do Not Connect. | | | | | # DUAL FIBRE CHANNEL DEVICE ## Table 14. JTAG Test Signals | Pin Name | Level | I/O | Pin # | Description | | | | |----------|-------|---------------|-------|---|--|--|--| | TMS | TTL | _ | A10 | Test Mode Select. Enables JTAG testing of device. | | | | | TCK | TTL | I | B10 | Test Clock. JTAG test clock. | | | | | TDI | TTL | I | C10 | Test Data In. JTAG data input. | | | | | TDO | TTL | O
TRISTATE | H16 | Test Data Out. JTAG data output. Can be high impedance under JTAG controller command. | | | | | TRS | TTL | I | В3 | Test Reset. Resets JTAG test state machine. | | | | **S2102** Figure 9. S2102 Pinout (Bottom View) | | Α | В | С | D | E | F | G | н | J | К | L | М | N | Р | R | т | |----|--------|--------|---------------|--------------|--------|-------------|--------------|-------------|---------|--------|---------------|--------|--------|--------------|--------|--------| | 1 | NC | PWR | DIGPWR | DIGGND | TTLGND | TTLPWR | COM_
DETA | TTLPWR | DOUTA2 | DOUTA4 | DOUTA6 | RBC1A | DIGPWR | TTLPWR | DIGGND | DIGGND | | 2 | VSSA | DIGPWR | CMODE | DIGPWR | DIGGND | TTLGND | DOUTA8 | DOUTA0 | DOUTA9 | DOUTA5 | DOUTA7 | TTLPWR | NC | DOUTB8 | TTLGND | TTLGND | | 3 | RXAP | TRS | DIGGND | TEST
MODE | DIGGND | TTLGND | TTLPWR | DOUTA1 | DOUTA3 | TTLGND | RBC0A | TTLGND | TTLGND | COM_
DETB | DOUTB0 | DOUTB2 | | 4 | RXAN | VDDA | TEST
MODE2 | | | | | | | | | | | DOUTB9 | TTLPWR | TTLGND | | 5 | NC | VSSSUB | NC | | | | | | | | | | | DOUTB1 | DOUTB3 | DOUTB6 | | 6 | VDDA | NC | VDD | | | | | | | | | | | DOUTB4 | DOUTB5 | NC | | 7 | VSSSUB | VSS | VSS | | | | | | | | | | | RBC0B | RBC1B | TTLPWR | | 8 | RXBP | VSSA | VDDA | | | | | | | | | | | DOUTB7 | TTLPWR | TTLGND | | 9 | RXBN | NC | VDD | | | | | | | | | | | DIGPWR | NC | NC | | 10 | TMS | TCK | TDI | | | | | | | | | | | DINA0 | TBCA | NC | | 11 | VSS | CLKSEL | RATE | | | | | | | | | | | DINA4 | DINA2 | DIGGND | | 12 | VSSSUB | VDD | VSSSUB | | | | | | | | | | | DINA7 | DINA5 | DINA1 | | 13 | TMODE | VDDA | VSSA | | | | | | | | | | | GND | DINA8 | DINA3 | | 14 | VSS | CAP2 | LPENA | NC | NC | NC | PECL
PWR | LPENB | REFCLK | GND | DINB9 | DINB6 | DINB3 | TBCB | GND | DINA6 | | 15 | CAP1 | RESET | NC | PECL
PWR | NC | PECL
PWR | NC | PECL
PWR | DIGPWR | TCLKO | TEST
MODE1 | DINB7 | DINB4 | DINB1 | NC | DINA9 | | 16 | PWR | NC | PECLGND | TXAP | TXAN | TXBN | TXBP | TDO | PECLGND | DIGGND | GND | DINB8 | DINB5 | DINB2 | DINB0 | GND | Note: NC used as Test Pins. Do Not Connect. ## **DUAL FIBRE CHANNEL DEVICE** ## Figure 10. S2102 Pinout (Top View) | Т | R | Р | N | М | L | к | J | н | G | F | E | D | С | В | Α | | |--------|--------|--------------|--------|--------|---------------|--------|---------|-------------|--------------|-------------|--------|--------------|---------------|--------|--------|----| | DIGGND | DIGGND | TTLPWR | DIGPWR | RBC1A | DOUTA6 | DOUTA4 | DOUTA2 | TTLPWR | COM_
DETA | TTLPWR | TTLGND | DIGGND | DIGPWR | PWR | NC | 1 | | TTLGND | TTLGND | DOUTB8 | NC | TTLPWR | DOUTA7 | DOUTA5 | DOUTA9 | DOUTA0 | DOUTA8 | TTLGND | DIGGND | DIGPWR | CMODE | DIGPWR | VSSA | 2 | | DOUTB2 | DOUTB0 | COM_
DETB | TTLGND | TTLGND | RBC0A | TTLGND | DOUTA3 | DOUTA1 | TTLPWR | TTLGND | DIGGND | TEST
MODE | DIGGND | TRS | RXAP | 3 | | TTLGND | TTLPWR | DOUTB9 | | • | • | • | • | • | • | • | • | • | TEST
MODE2 | VDDA | RXAN | 4 | | DOUTB6 | DOUTB3 | DOUTB1 | | | | | | | | | | | NC | VSSSUB | NC | 5 | | NC | DOUTB5 | DOUTB4 | | | | | | | | | | | VDD | NC | VDDA | 6 | | TTLPWR | RBC1B | RBC0B | | | | | | | | | | | VSS | VSS | VSSSUB | 7 | | TTLGND | TTLPWR | DOUTB7 | | | | | | | | | | | VDDA | VSSA | RXBP | 8 | | NC | NC | DIGPWR | | | | | | | | | | | VDD | NC | RXBN | 9 | | NC | TBCA | DINA0 | | | | | | | | | | | TDI | TCK | TMS | 10 | | DIGGND | DINA2 | DINA4 | | | | | | | | | | | RATE | CLKSEL | VSS | 11 | | DINA1 | DINA5 | DINA7 | | | | | | | | | | | VSSSUB | VDD | VSSSUB | 12 | | DINA3 | DINA8 | GND | | | | | | | | | | | VSSA | VDDA | TMODE | 13 | | DINA6 | GND | TBCB | DINB3 | DINB6 | DINB9 | GND | REFCLK | LPENB | PECL
PWR | NC | NC | NC | LPENA | CAP2 | VSS | 14 | | DINA9 | NC | DINB1 | DINB4 | DINB7 | TEST
MODE1 | TCLKO | DIGPWR | PECL
PWR | NC | PECL
PWR | NC | PECL
PWR | NC | RESET | CAP1 | 15 | | GND | DINB0 | DINB2 | DINB5 | DINB8 | GND | DIGGND | PECLGND | TDO | TXBP | TXBN | TXAN | TXAP | PECLGND | NC | PWR | 16 | Note: NC used as Test Pins. Do Not Connect. Figure 11. Compact 21mm x 21mm 156 TBGA Package | Device | ⊖ја | Ѳјс | |--------|----------|---------| | S2102 | 19.8°C/W | 3.5°C/W | Figure 12. Transmitter Timing (REFCLK Mode, TMODE = 0) Table 15. S2102 Transmitter Timing (REFCLK Mode, TMODE = 0) | Parameters | Description | Min | Max | Units | Conditions | |----------------|--------------------------|-----|-----|-------|-------------| | T ₁ | Data Setup w.r.t. REFCLK | 0.5 | - | ns | See Note 1. | | T ₂ | Data Hold w.r.t. REFCLK | 1.5 | - | ns | _ | ^{1.} All AC measurements are made from the reference voltage levels of the clock (1.4V) to the valid input or output data levels (.8V or 2.0V). Figure 13. Transmitter Timing (TBC Mode, TMODE = 1) Table 16. S2102 Transmitter Timing (TBC Mode, TMODE = 1) | Parameters | Description | Min | Max | Units | Conditions | |----------------|-------------------------------------|-----|-----|-------|-------------| | T ₁ | Data Setup w.r.t. TBC | 1.0 | | ns | See Note 1. | | T ₂ | Data Hold w.r.t. TBC | 0.5 | | ns | | | | Phase drift between TBCx and REFCLK | -3 | +3 | ns | | ^{1.} All AC measurements are made from the reference voltage levels of the clock (1.4V) to the valid input or output data levels (.8V or 2.0V). Table 17. S2102 Receiver Timing (Full and Half Clock Mode) | Parameters | Description | Min | Max | Units | Conditions | |------------------|------------------------------------|-----|-----|-------|---| | T ₃ | Data Setup w.r.t. RBC1/0x | 3.0 | | ns | at 1.062 Gbps ^{1,2}
TMODE = 1 | | T ₄ | Data Hold w.r.t. RBC1/0x | 2.5 | | ns | TMODE = 1 | | T ₅ | Data Setup w.r.t. RBC1/0x | 3.0 | | ns | at 1.062 Gbps ^{1,2}
TMODE = 1 | | T ₆ | Data Hold w.r.t. RBC1/0x | 2.5 | | ns | TMODE = 1 | | T ₇ | Time from RBC1x rise to RBC0x rise | 8.9 | 9.9 | ns | at 1.062 Gbps ^{1,2} | | T_{R1},T_{F1} | RBC1x Rise and Fall Times | | 2.4 | ns | See note 2. See Figure 19. | | T_{R0},T_{F0} | RBC0x Rise and Fall Times | | 2.4 | ns | See note 2. See Figure 19. | | T_{DR}, T_{DF} | DOUTx Rise and Fall Times | | 2.4 | ns | See note 2. See Figure 19. | | Duty Cycle | RBC1/0x Duty Cycle | 40 | 60 | % | See note 1. | ^{1.} Measurements made from the reference voltage levels of the clock (1.4V) to the valid input or output data levels (.8V or 2.0V). Table 18. Receiver Timing (External Clock Mode) | Parameters | Description | Min | Max | Units | Conditions | |----------------|------------------------------------|-----|-----|-------|--| | T ₈ | TBCA to DOUTx
Propagation Delay | 3.0 | 8.0 | ns | 10 pf capacitance at the end of a 3 inch 50Ω transmission line. | ^{1.} Measurements made from the reference voltage levels of the clock (1.4V) to the valid input or output data levels (.8V or 2.0V). ^{2.} TTL/CMOS AC timing measurements are assumed to have an output load of 10pf. Figure 14. Receiver Timing (Full Clock Mode, CMODE = 1) Figure 15. Receiver Timing (Half Clock Mode, CMODE = 0) Figure 16. Receiver Timing (External Clock Mode) (TBCA to DATA Propagation Delay, TMODE = 0) Figure 17. TCLKO Timing Table 19. S2102 Transmitter (TCLKO Timing) | Parameters | Description | Min | Max | Units | Conditions | |----------------|------------------------|-----|-----|-------|------------| | T ₉ | † TCLKO w.r.t. †REFCLK | 1.0 | 6.5 | ns | | | | TCLKO Duty Cycle | 45% | 55% | % | | Note: Measurements are made at 1.4V level of clocks. Table 20. Absolute Maximum Ratings | Parameter | Min | Тур | Max | Units | |---------------------------------------|------------|-----|------|-------| | Storage Temperature | -65 | | 150 | °C | | Voltage on VDD with Respect to GND | -0.5 | | +5.0 | V | | Voltage on any TTL Input Pin | -0.5 | | 3.47 | V | | Voltage on any PECL Input Pin | 0 | | VDD | V | | TTL Output Sink Current | | | 8 | mA | | TTL Output Source Current | | | 8 | mA | | High Speed PECL Output Source Current | | | 25 | mA | | ESD Sensitivity ¹ | Over 500 V | | | | ^{1.} Human body model. Table 21. Recommended Operating Conditions | Parameter | Min | Тур | Max | Units | |--|------------|-----|------|-------| | Ambient Temperature Under Bias | 0 | | 70 | °C | | Junction Temperature Under Bias | | | 130 | °C | | Voltage on any Power Pin with respect to GND/VSS | 3.13 | 3.3 | 3.47 | V | | Voltage on any TTL Input Pin | 0 | | 3.47 | V | | Voltage on any PECL Input Pin | VDD
-2V | | VDD | V | Table 22. Reference Clock Requirements | Parameters | Description | Min | Max | Units | Conditions | |-------------------------------------|---------------------------|------|------|-------|--| | FT | Frequency Tolerance | -100 | +100 | ppm | | | TD ₁₋₂ | Symmetry | 40 | 60 | % | Duty Cycle at 50% pt. | | T _{RCR} , T _{RCF} | REFCLK Rise and Fall Time | | 2 | ns | 20% - 80%. | | _ | Jitter | | 80 | ps | Peak-to-Peak, to maintain ≥ 77% eye opening. | ## **DUAL FIBRE CHANNEL DEVICE** Table 23. Serial Data Timing, Transmit Outputs | Parameters | Description | Min | Тур | Max | Units | Comments | |-----------------------------------|---|-----|-----|------|-------|---------------------------| | Total Jitter | Serial Data Output total jitter | | | 0.23 | UI | Peak-to-Peak. | | T _{DJ} | Serial Data Output deterministic jitter | | | 0.08 | UI | Peak-to-Peak. | | T _{SR} , T _{SF} | Serial Data Output rise and fall time | | | 300 | ps | 20% - 80%. See Figure 18. | #### Table 24. Serial Data Timing, Receive Inputs | Parameters | Description | Min | Тур | Max | Units | Comments | |-----------------------------------|---|------|-----|-----|-------|---| | T _{LOCK} (Frequency) | Frequency Acquisition Lock Time (Loss of Lock) (1.062 Gbps) | | | 175 | μs | 8B/10B idle pattern sample basis, from device start up. | | T _{FDJ} | Frequency Dependent Jitter
Tolerance | 0.10 | | | UI | As specified in ANSI X3T11. | | T _{DJ} | Deterministic Input Jitter Tolerance | 0.38 | | | UI | As specified in ANSI X3T11. | | T _{RJ} | Random Input Jitter Tolerance | 0.22 | | | UI | As specified in ANSI X3T11. | | Input Jitter
Tolerance | Serial Data Input total jitter tolerance | 0.7 | | | UI | As specified in ANSI X3T11. | | R _{SR} , R _{SF} | Serial Data Input rise and fall time | | | 330 | ps | 20% - 80%. See Figure 18. | #### Table 25. DC Characteristics | Parameters | Description | Min | Тур | Max | Units | Conditions | |-------------------|--|------|------|------|-------|------------------------------------| | V _{OH} | Output High Voltage (TTL) | 2.4 | 2.8 | VDD | V | VDD = min I _{OH} = -4mA | | V _{OL} | Output Low Voltage (TTL) | GND | .025 | 0.5 | V | VDD = min I _{OL} = 4mA | | V _{IH} | Input High Voltage (TTL) | 2.0 | | | V | | | V _{IL} | Input Low Voltage (TTL) | GND | | 0.8 | V | | | I _{IH} | Input High Current (TTL) | | | 40 | μA | V _{IN} = 2.4 V, VDD = Max | | I | Input Low Current (TTL) | | | 600 | μA | V _{IN} = .8 V, VDD = Max | | IDD | Supply Current | | 570 | 660 | mA | 1010 Pattern. | | P _D | Power Dissipation | | 1.85 | 2.3 | W | 1010 Pattern. | | V _{DIFF} | Min. differential input voltage swing for differential PECL inputs | 100 | | 2600 | mV | See Figure 21. | | ΔV_{OUT} | Differential Serial Output Voltage
Swing | 1400 | | 2600 | mV | See Figure 20. | | C _{IN} | Input Capacitance | | | 3 | pf | | #### **OUTPUT LOAD** The S2102 serial outputs do not require output pulldown resistors. Figure 18. Serial Input/Output Rise and Fall Time Figure 19. TTL Input/Output Rise and Fall Time Figure 20. Serial Output Load Figure 21. High Speed Differential Inputs Figure 22. Receiver Input Eye Diagram Jitter Mask Figure 23. Loop Filter Capacitor Connections ### **DUAL FIBRE CHANNEL DEVICE** #### Ordering Information | PREFIX | DEVICE | PACKAGE | |-----------------------|--------|---------------| | S- Integrated Circuit | 2102 | TB – 156 TBGA | # Applied Micro Circuits Corporation • 6290 Sequence Dr., San Diego, CA 92121 Phone: (619) 450-9333 • (800) 755-2622 • Fax: (619) 450-9885 http://www.amcc.com AMCC reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. AMCC does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. AMCC reserves the right to ship devices of higher grade in place of those of lower grade. AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. AMCC is a registered trademark of Applied Micro Circuits Corporation. Copyright ® 1999 Applied Micro Circuits Corporation D109/R163