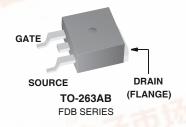
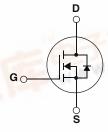


January 2006

FDB8860

N-Channel Logic Level PowerTrench® MOSFET 30V, 80A, 2.6m Ω


Features


- $R_{DS(ON)} = 1.9 \text{m}\Omega$ (Typ), $V_{GS} = 5 \text{V}$, $I_D = 80 \text{A}$
- $Q_{g(5)} = 89nC (Typ), V_{GS} = 5V$
- Low Miller Charge
- Low Q_{RR} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- 12V Automotive Load Control
- Start / Alternator Systems
- Electronic Power Steering Systems
- ABS
- DC-DC Converters

Units

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (V _{GS} = 10V, T _C < 163°C)	80	Α
ID	Continuous (V _{GS} = 5V, T _C < 162°C)	80	Α
	Continuous ($V_{GS} = 10V$, $T_C = 25$ °C, with $R_{\theta JA} = 43$ °C/W)	31	Α
	Pulsed	Figure 4	Α
E _{AS}	SinglePulseAvalancheEnergy (Note1)	947	mJ
D	Power Dissipation	306	W
P_{D}	Derate above 25°C	2.04	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to +175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	0.49	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient (Note 2)	62	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-263,1in ² copper pad area	43	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8860	FDB8860	TO-263AB	330mm	24mm	800units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Parameter

Off Characteristics							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 1mA, V_{GS} = 0$	0V	30	-	-	V
I _{DSS} Zero Gate Voltage D	Zoro Coto Voltago Droin Current	$V_{DS} = 24V$		-	-	1	μА
	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_J = 150$ °C	-	-	250	μА
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

Test Conditions

Min

Тур

Max

On Characteristics

Symbol

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.7	3	V
	I _D = 80A, V _{GS} = 10V	-	1.6	2.3		
	R _{DS(ON)} Drain to Source On Resistance	$I_D = 80A, V_{GS} = 5V$	-	1.9	2.6	
R _{DS(ON)}		$I_D = 80A, V_{GS} = 4.5V$	-	2.1	2.7	mΩ
	$I_D = 80A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	-	2.5	3.6		

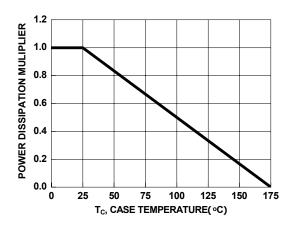
Dynamic Characteristics

C _{ISS}	Input Capacitance	V 45V V	$V_{DS} = 15V, V_{GS} = 0V,$		9460	12585	pF
Coss	Output Capacitance	$V_{DS} = 15V, V_{GS}$ f = 1MHz			1710	2275	pF
C _{RSS}	Reverse Transfer Capacitance	1 - 1141112		-	1050	1575	pF
R_G	Gate Resistance	f = 1MHz	f = 1MHz		1.8	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V		-	165	214	nC
$Q_{g(5)}$	Total Gate Charge at 5V	V _{GS} = 0V to 5V],, ,_,,	-	89	115	nC
$Q_{g(TH)}$	Threshold Gate Charge	V _{GS} = 0V to 1V	$V_{DD} = 15V$ $I_{D} = 80A$	-	9.1	12	nC
Q_{gs}	Gate to Source Gate Charge		$I_0 = 60A$ $I_0 = 1.0mA$	-	26	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		ig = 1.0117 (-	18	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	33	-	nC

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Switching	g Characteristics					
t _(on)	Turn-On Time		-	-	340	ns
t _{d(on)}	Turn-On Delay Time		-	14	-	ns
t _r	Turn-On Rise Time	$V_{DD} = 15V, I_D = 80A$	-	213	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 5V, R_{GS} = 1\Omega$	-	79	-	ns
t _f	Turn-Off Fall Time		-	49	-	ns
t _{off}	Turn-Off Time		-	-	192	ns

Drain-Source Diode Characteristics


V	Source to Drain Diode Voltage	I _{SD} = 80A			1.25	V
V_{SD}	Source to Drain blode Voltage	I _{SD} = 40A	•	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 80A$, $dI_{SD}/dt = 100A/\mu s$	-	-	43	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 80A$, $dI_{SD}/dt = 100A/\mu s$	-	-	29	nC

Notes: 1: Starting $T_J = 25^{\circ}C$, L = 0.47 mH, $I_{AS} = 64 \text{A}$, $V_{DD} = 30 \text{V}$, $V_{GS} = 10 \text{V}$. 2: Pulse width = 100s

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

3

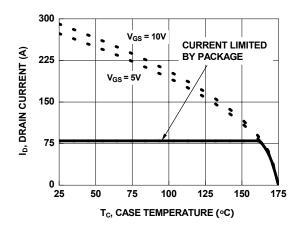


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs
Case Temperature

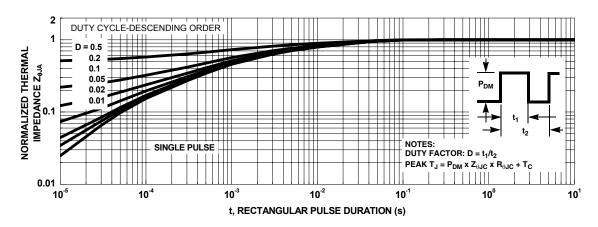


Figure 3. Normalized Maximum Transient Thermal Impedance

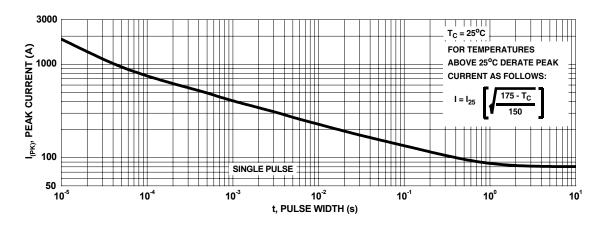
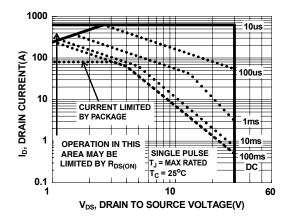
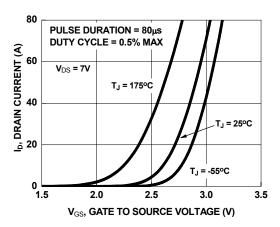



Figure 4. Peak Current Capability

Typical Characteristics $T_J = 25$ °C unless otherwise noted

IAS, AVALANCHE CURRENT 0.1 10 100 1000 10000 t_{AV}, TIME IN AVALANCHE (ms)

 $t_{AV} = (L/R)ln[(I_{AS}*R)/(1.3*RATED BV_{DSS} - V_{DD}) +1]$


If R = 0 t_{AV} = (L)(I_{AS})/(1.3*RATED BV_{DSS}

500

₹

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 6. Unclamped Inductive Switching Capability

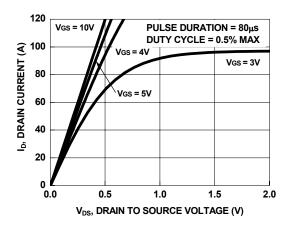
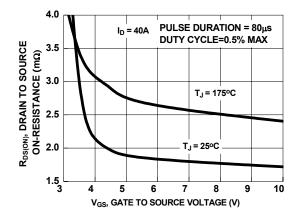



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

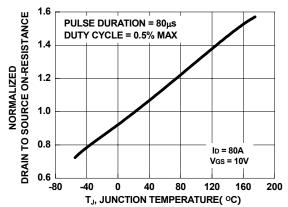


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics T_J = 25°C unless otherwise noted

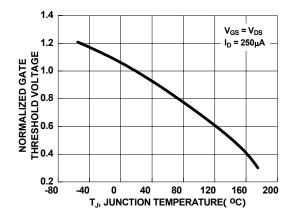


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

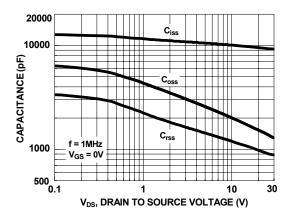


Figure 13. Capacitance vs Drain to Source Voltage

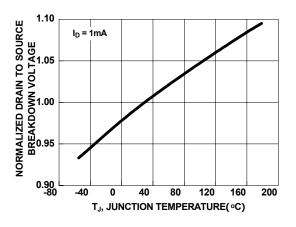


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

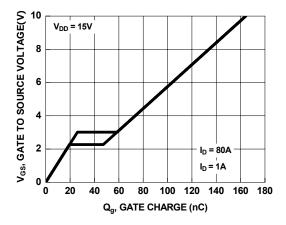


Figure 14. Gate Charge vs Gate to Source Voltage

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™ _
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™ .	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C TM	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	i-Lo™	OCXTM	μSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX TM
FACT Quiet Serie	es TM	OPTOPLANAR™	SMART START™	Wire™
Aaroog the hoore	I. Around the world.™	PACMAN™	SPM™	
		POP™	Stealth™	
The Power Franchise [®] Programmable Active Droop™		Power247™	SuperFET™	
Fiogrammable A	clive Dioop'"	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.