

HMC-VVD104

GaAs PIN MMIC VOLTAGE-VARIABLE ATTENUATOR, 70 - 86 GHz

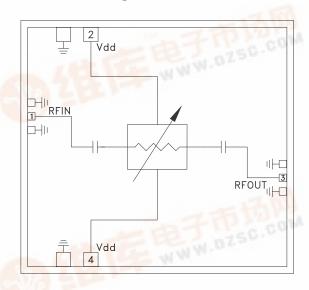
Typical Applications

This HMC-VVD104 is ideal for:

- · E-Band Communication Systems
- · Short Haul / High Capacity Radios WW.DZSC.CO
- Automotive Radar
- Test Equipment
- SATCOM and Sensors

Features

Low Insertion Loss: 2 dB


Wide Dynamic Range: 14 dB

Balanced Topology

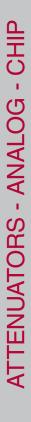
Flexible Biasing

Single Control Voltage: -5V to +5V Die Size: 1.99 x 1.845 x 0.1 mm

Functional Diagram

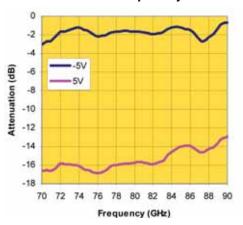
General Description

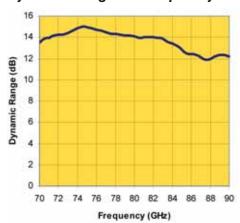
The HMC-VVD104 is a monolithic GaAs PIN diode based Voltage Variable Attenuator (VVA) which exhibits low insertion loss, high IP3, and wide dynamic range. The balanced topology delivers excellent return loss while the single control voltage can be applied to either side of the die. All bond pads and the die backside are Ti/Au metallized, and the PIN diode devices are fully passivated for reliable operation. This wideband VVA MMIC is compatible with conventional die attach methods, as well as thermocompression and thermosonic wirebonding, making it ideal for MCM and hybrid microcircuit applications. All data shown herein is measured with the chip in a 50 Ohm environment and contacted with RF probes.


Electrical Specifications, $T_{A} = +25$ °C, 50 Ohm System

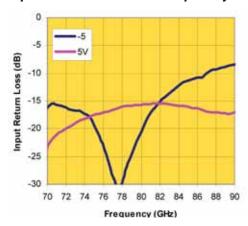
Parameter	Min.	Тур.	Max.	Units
Frequency Range	90.	70 - 86	Ala	GHz
Insertion Loss	F. P.V/6	2	3	dB
Attenuation Range		14		dB
Input Return Loss	1010	14		dB
Output Return Loss		12		dB

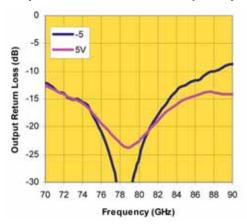
Unless otherwise indicated, all measurements are from probed die





GaAs PIN MMIC VOLTAGE-VARIABLE ATTENUATOR, 70 - 86 GHz


Attenuation vs. Frequency


Dynamic Range vs. Frequency

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

Note: Measured Performance Characteristics (Typical Performance at 25°C) Pin= -20 dBm

GaAs PIN MMIC VOLTAGE-VARIABLE ATTENUATOR, 70 - 86 GHz

Absolute Maximum Ratings

Control Voltage Range (Vdd)	-6V to +6V Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
Bias Current (Idd)	30 mA

Outline Drawing

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES [MM].
- 2. TYPICAL BOND PAD IS .004" SQUARE.
- 3. BACKSIDE METALLIZATION: GOLD.
- 4. BACKSIDE METAL IS GROUND.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.
- 7. OVERALL DIE SIZE ±.002"