Crane Aerospace & Electronics Power Solutions

MFL Single and Dual DC/DC Converters

28 VOLT INPUT - 65 WATT

FEATURES

- -55° to +125°C operation
- 16 to 40 VDC input
- · Fully Isolated
- · Magnetic feedback
- Fixed frequency, 600 kHz typical
- Topology Single Ended Forward
- 50 V for up to 120 ms transient protection
- · Inhibit (input & output side)
- Sync function (in and out)
- Output trim on single output models
- · Indefinite short circuit protection
- · Remote sense on single output models
- Up to 87% efficiency / 43 W/in³
- Parallelable up to 148 watts

CONTROL OF THE PARTY OF THE PAR

MOD	ELS			
VDC C	UTPUT			
SINGLE	DUAL			
3.3	±5			
5	±12			
12	±15			
15				
28				
Othor outp	ut voltages			

Other output voltages available upon request, including 2 V, 8 V and 54 V single.

DESCRIPTION

The MFL Series™ 28-volt DC/DC converters are rated up to 65 watts of output power over a −55°C to +125°C temperature range with a 28 VDC nominal input. On dual output models up to 70% of the rated output power can be drawn from either the positive or negative output. Current sharing allows the units to be paralleled for total power of up to 148 watts. The welded, hermetically sealed package is only 3.005 x 1.505 x 0.400 inches, giving the series an overall power density of up to 43 watts per cubic inch.

DESIGN FEATURES

The MFL Series converters are switching regulators that use a quasi-square wave, single ended forward converter design with a constant switching frequency of 600 kHz.

Isolation between input and output circuits is provided with a transformer in the forward path and a wide bandwidth magnetic coupling in the feedback control loop. The MFL uses a unique dual loop feedback technique that controls output current with an inner feedback loop and an output voltage with a cascaded voltage mode feedback loop.

The additional secondary current mode feedback loop improves transient response in a manner similar to primary current mode control and allows for ease of paralleling, but without the cost and complexity.

The constant frequency, pulse-width modulated converters use a quasi-square wave single-ended forward design. Tight load regulation is achieved through a wide-bandwidth magnetic feedback circuit. The output on single MFL models can be trimmed (see Figure 1 for voltage changes with different resistor values).

INHIBIT

The MFL Series converters have two TTL compatible inhibit terminals (INH1 and INH2) that can be used to disable power conversion, resulting in a very low quiescent input current and no generation of switching noise. An open collector TTL compatible low (<0.8 volts) is required to inhibit the converter between INH1 (pin 4) and Input Common (pin 2). An open collector TTL compatible low (<0.5 volts) is required to inhibit the converter between INH2 (pin 12) and Output Common (pin 8). The application of intermediate voltages to these pins (1.5 to 10.5 volts) should be avoided.

SYNC

Converters may be synced to an external clock (525 to 675 kHz) or to one another by using the sync in or out pins. The nominal freerun switching frequency is 600 kHz.

CURRENT AND PARALLEL OPERATION

Multiple MFL converters may be used in parallel to drive a common load (see Figure 2). In this mode of operation the load current is shared by two or three MFL converters. In current sharing mode, one MFL converter is designated as a master. The SLAVE pin (pin 11) of the master is left unconnected and the MSTR/INH2 pin (pin 12) of the master is connected to the SLAVE pin (pin 11) of the slave units. The units designated as slaves have the MSTR/INH2 pin (pin 12) connected to the SNS RTN pin (pin 9). Figure 2 shows the typical setup for two or three units in parallel. Note that synchronizing the units together (though shown in the figure) is not required for current sharing operation. A second slave unit may be placed in parallel with a master and slave; this requires the TRI pin (pin 3) of the master unit to be connected to the SNS RTN pin (pin 9).

When paralleled, 76% of the total combined power ratings of the MFL converters are available at the load. Overload and short circuit performance are not adversely affected during parallel operation.

28 VOLT INPUT - 65 WATT

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage Range

- 16 to 40 VDC continuous
- · 50 V for 120 msec transient

Output Power

· 50 to 65 watts depending on model

Lead Soldering Temperature (10 sec per lead)

· 300°C

Storage Temperature Range (Case)

• -65°C to +150°C

Power Dissipation (Pd)

· 14 watts (16 watts MFL2805S, MFL2805D)

Case Operating Temperature (Tc)

- -55°C to +125°C full power
- −55°C to +135°C absolute

Derate Output Power/Current

- · Linearly from 100% at 125°C to 0% at 135°C
- MFL283R3S: linearly from 100% at 100°C to 80% at 125°C and to 0% at 135°C

Output Voltage Temperature Coefficient

· 100 ppm/°C typical

Input to Output Capacitance

150 pF, typical

Current Limit

· 125% of full load typical Isolation

• 100 megohm minimum at 500 V

Audio Rejection · 50 dB typical

Conversion Frequency (-55°C to 125°C)

· Free run mode 600 kHz typical 525 kHz. min, 675 kHz max

Inhibit Pin Voltage (unit enabled)

• INH1 = 9 to 12 V, INH2 = 6 to 9 V

SYNC AND INHIBIT (INH1, INH2)

Sync In (525 to 675 kHz)

- · Duty cycle 40% min, 60% max
- · Logic low 0.8 V max
- · Logic high 4.5 V min, 5 V max
- · Referenced to input common

Sync Out

· Referenced to input common

Inhibit (INH1, INH2) TTL Open Collector

· Logic low (output disabled) INH1 referenced to input common Logic low 0.8 V max

Inhibit pin current 10 mA max INH2 referenced to output common

Logic low 0.5 V max Inhibit pin current 5 mA max

· Logic high (output enabled) Open collector

MECHANICAL AND ENVIRONMENTAL

Size (maximum)

3.005 x 1.505 x 0.400 inches (76.33 x 38.23 x 10.16 mm) See case U for dimensions.

Case options V, W, Y and Z are available by special order.

Weight (maximum)

86 grams

Screening

Standard, ES, or /883 (Class H, QML). See "883, Class H, QML Products - Element Evaluation" and "883, Class H, QML Products - Environmental Screening" for more information.

28 VOLT INPUT - 65 WATT

PIN OUT

Pin	Single Output	MFL2828S	Dual Output
1	Positive Input	Positive Input	Positive Input
2	Input Common	Input Common	Input Common
3	Triple (TRI)	Triple (TRI)	Triple (TRI)
4	Inhibit 1 (INH1)	Inhibit 1 (INH1)	Inhibit 1 (INH1)
5	Sync Out	Sync Out	Sync Out
6	Sync In	Sync In	Sync In
7	Positive Output	Positive Output	Positive Output
8	Output Common	No connection	Output Common
9	Sense Return	Output Common	Negative Output
10	Positive Sense	No connection	No connection
11	Slave	Slave	Slave
12	Master/ Inhibit 2	Master/ Inhibit 2	Master / Inhibit 2

PINS NOT IN USE

TR1	Leave unconnected
Master	Leave unconnected
Slave	Leave unconnected
Sync in	Connect to input common
Inhibit (INH1)	Leave unconnected
Inhibit (INH2)	Leave unconnected
Sync Out	Leave unconnected
Sense Lines	Must be connected to
	appropriate outputs
Sync Out	Leave unconnected Must be connected to

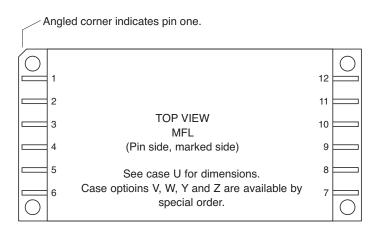
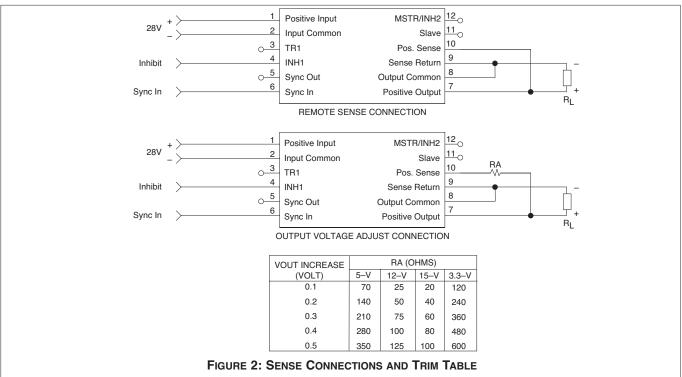
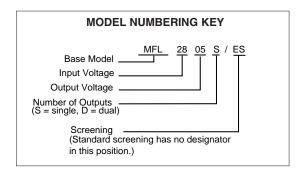



FIGURE 1: PIN OUT


28 VOLT INPUT - 65 WATT

SINGLE OUTPUT MODELS CONNECTION DIAGRAMS - SENSE AND PARALLEL

Positive Input MSTR/INH2 11_0 Input Common Slave 3 10 TR1 Pos. Sense **MASTER** 4 Inhibit INH1 Sense Return Sync Out Output Common Sync In Sync In Positive Output CONNECT ONLY WHEN 2 SLAVES ARE USED Positive Input MSTR/INH2 12 Slave 11 2 Input Common 0_3 Pos. Sense 10 TR1 0_4 SLAVE 1 INH1 Sense Return 5 Sync Out Output Common Sync In Positive Output Positive Input MSTR/INH2 12 2 Input Common Slave 0_3 TR1 Pos. Sense 4 9 INH1 Sense Return 8 Sync Out Output Common Sync In Positive Output FIGURE 3: PARALLEL CONNECTIONS

28 VOLT INPUT - 65 WATT

SMD NUMBERS								
STANDARD MICROCIRCUIT DRAWING (SMD)	MFL SERIES SIMILAR PART							
IN PROCESS	MFL283R3S							
5962-9316301HXC	MFL2805S/883							
5962-9316201HXC	MFL2812S/883							
5962-9316101HXC	MFL2815S/883							
IN PROCESS	MFL2828S/883							
5962-9319101HXC	MFL2805D/883							
5962-9319201HXC	MFL2812D/883							
5962-9319301HXC	MFL2815D/883							
For exact specifications for an SMD product, refer to the SMD drawing. SMDs can be downloaded from: http://www.dscc.dla.mil/programs/smcr								

Model Selection									
MFL28 Base model	Vout value	number of outputs	 screening						
Choose one from e	ach of the foll	owing rows							
Vout value	for single	s: 3R3, 5, 12, 15, 28	for duals: 5, 12, 15						
	"R" = deci	mal point, 3R3 = 3.3VDC							
Number of output	s S (single)	or D (dual)							
Screening	standard	screening, leave blank	/ES (ES screening), /883 (Class H, QML)						

28 VOLT INPUT - 65 WATT

Electrical Characteristics: -55°C to +125° C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODELS			MFL283R3S			MFL2805S			MFL2812S		
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	Tc = 25°C	3.26	3.3	3.34	4.95	5.00	5.05	11.88	12.00	12.12	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 40 VDC	0	_	12.12 ²	0	_	10	0	_	5	Α
OUTPUT POWER	V _{IN} = 16 TO 40 VDC	0	_	40 ²	0	_	50	0	_	60	W
OUTPUT RIPPLE	Tc = 25°C	_	10	35	_	15	35	_	30	75	mV p-p
VOLTAGE 10 k - 2 MHz	$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$	_	10	50	_	30	50	_	45	100	IIIV p-p
LINE REGULATION	V _{IN} = 16 to 40 VDC	_	0	20	_	0	20	_	0	20	mV
LOAD REGULATION	NO LOAD TO FULL	_	_	40	_	_	20	_	_	20	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT ^{1, 3} 50 ms	_	_	50	_	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	_	70	100	_	70	120	_	50	100	mA
	INHIBITED - INH1	_	9	14	_	9	14	_	9	14	mA
	INHIBITED - INH2	_	35	70	_	35	70	_	35	70	111/4
INPUT RIPPLE											
CURRENT	10 kHz - 10 MHz	_	15	50	_	15	50	_	15	50	mA pp
EFFICIENCY	Tc = 25°C	73	_	_	77	80	_	83	86	_	%
LOAD FAULT	POWER DISSIPATION										
	SHORT CIRCUIT										
	Tc = 25°C	_	12.5	20	_	12.5	16	_	10	14	W
	RECOVERY1	_	1.5	4	_	1.5	4	_	1.5	4	ms
STEP LOAD RESP.	50% - 100% - 50%										
	TRANSIENT	_	200	400	_	250	350	_	450	600	mV pk
	RECOVERY ^{1, 4}	_	1.5	3.0	_	1.5	3.0	_	1.5	3.0	ms
STEP LINE RESP.	16 – 40 – 16 VDC										
	TRANSIENT ^{1, 5}	_	250	300	_	250	300	_	250	400	mV pk
	RECOVERY ^{1, 4}	_	200	600	_	200	300	_	200	300	μs
START-UP ⁶	DELAY	_	3.5	6	_	3.5	6	_	3.5	6	ms
	OVERSHOOT ¹	_	0	25	_	0	25	_	0	50	mV pk
C _{OUT}	Tc=25°C ^{1, 7}	_	_	1000	_	_	1000	_	_	1000	μF

Notes

- 1. Guaranteed by design, not tested.
- 2. MFL283R3S current and power maximum are at 25°C only.
- 3. Unit will shut down above approximately 45V but will be undamaged and will restart when voltage drops into normal range.
- 4. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 5. Transition time \geq 10 μ s.
- 6. Tested on release from inhibit.
- 7. Shall not compromise DC performance

28 VOLT INPUT - 65 WATT

Electrical Characteristics: -55°C to +125° C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODE	MFL2815S			MF				
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX ²	UNITS
OUTPUT VOLTAGE	Tc = 25°C	14.85	15.00	15.15	27.72	28.00	28.28	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 40 VDC	0	_	4.33	0	_	2.32	Α
OUTPUT POWER	V _{IN} = 16 TO 40 VDC	0	_	65	0	_	65	W
OUTPUT RIPPLE	Tc = 25°C	_	30	85	_	100	200	mV p-p
VOLTAGE 10 k - 2 MHz	Tc = -55°C to +125°C	_	45	110	_	_	_	πν ρ-ρ
LINE REGULATION	V _{IN} = 16 to 40 VDC	_	0	20	_	20	60	mV
LOAD REGULATION	NO LOAD TO FULL	_	0	20	_	20	75	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT ^{1, 3} 50 ms	_	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	_	50	100	_	60	100	mA
	INHIBITED - INH1	_	9	14	_	9	14	mA
	INHIBITED - INH2	_	35	70	_	35	70	IIIA
INPUT RIPPLE								
CURRENT	10 kHz - 10 MHz	_	15	50	_	20	50	mA pp
EFFICIENCY	Tc = 25°C	84	87	_	83	86	_	%
LOAD FAULT	POWER DISSIPATION							
	SHORT CIRCUIT							
	Tc = 25°C	_	10	14	_	7	14	W
	RECOVERY ¹	_	1.5	4	_	1.0	4	ms
STEP LOAD RESP.	50% - 100% - 50%							
	TRANSIENT	_	500	600	_	800	1400	mV pk
	RECOVERY ^{1, 4}	_	1.5	3.0	_	1.5	3.0	ms
STEP LINE RESP.	16 – 40 – 16 VDC							
	TRANSIENT ^{1, 5}	_	250	400	_	250	800	mV pk
	RECOVERY ^{1, 4}	_	200	300	_	200	400	μs
START-UP ⁶	DELAY	_	3.5	6	_	3.5	6	ms
	OVERSHOOT ^{1,}	_	0	50	_	0	100	mV pk
C _{OUT}	Tc=25°C ^{1, 7}	_	_	1000	_	_	1000	μF

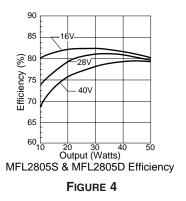
Notes

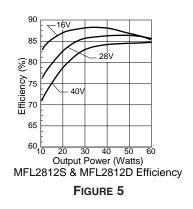
- 1. Guaranteed by design, not tested.
- 2. MFL2828S specifiications are at 25°Tc.
- 3. Unit will shut down above approximately 45V but will be undamaged and will restart when voltage drops into normal range.
- Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 5. Transition time \geq 10 μ s.
- 6. Tested on release from inhibit.
- 7. Shall not compromise DC performance

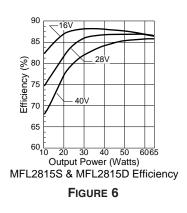
28 VOLT INPUT - 65 WATT

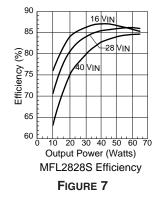
Electrical Characteristics: -55°C to +125° C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

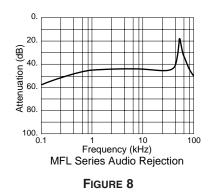
DUAL OUTPUT MODELS		MFL2805D		MFL2812D			MFL2815D				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	$Tc = 25^{\circ}C \frac{^{+V_{OUT}}}{^{-V_{OUT}}}$	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	$IC = 25^{\circ}C - V_{OUT}$	4.92	5.00	5.08	11.82	12.00	12.18	14.77	15.00	15.23	VDC
OUTPUT CURRENT ²	EACH OUTPUT	0	_	7	0	_	3.5	0	_	3.03	A
V_{IN} = 16 TO 40 VDC	TOTAL OUTPUT	0	_	10	0	_	5	0	_	4.34	
OUTPUT POWER ²	V _{IN} = 16 TO 40 VDC	0	_	50	0	_	60	0	_	65	W
OUTPUT RIPPLE											
VOLTAGE +/- V _{OUT}	10 kHz - 2 MHz	-	50	100	_	50	120	_	50	150	mV p-p
LINE REGULATION	+V _{OUT}	_	0	50	_	0	50	_	0	50	mV
V _{IN} = 16 TO 40 VDC	-V _{OUT}	–	25	100	_	25	100	_	25	100	IIIV
LOAD REGULATION	+V _{OUT}	_	0	50	_	10	50	_	10	50	.,
NO LOAD TO FULL	-V _{OUT}	–	25	100	_	50	120	_	50	150	mV
CROSS REGULATION	SEE NOTE 3	_	5	8	_	2	4	_	2	4	0/
Tc = 25°C	SEE NOTE 4	-	3	6	_	2	4	_	2	4	%
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT ^{1, 5} 50 ms.	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD	_	50	120	_	50	100	_	50	100	mA
	INHIBITED - INH1	_	9	14	_	9	14	_	9	14	mA
	INHIBITED - INH2	_	35	70	_	35	70	_	35	70	IIIA
INPUT RIPPLE											
CURRENT	10 kHz - 10 MHz		15	50	_	15	50		15	50	mA p-p
EFFICIENCY 25°C Tc	BALANCED LOAD	77	80		83	86		84	87		%
LOAD FAULT	POWER DISSIPATION										
	SHORT CIRCUIT										
	Tc = 25°C		12.5	16	_	10	14	_	10	14	W
	RECOVERY ¹		1.5	4.0	_	1.5	4.0		1.5	4.0	ms
STEP LOAD RESP.	50 %-100%- 50% LOAD										
± V _{OUT}	TRANSIENT	-	250	350	_	450	600	_	500	600	mV pk
	RECOVERY ^{1, 6}		1.5	3.0	_	1.5	3.0	_	1.5	3.0	ms
STEP LINE RESP.	16 – 40 – 16 V _{IN}										
± V _{OUT}	TRANSIENT ^{1, 7}	_	250	300	_	250	400	_	250	400	mV pk
	RECOVERY ^{1, 6}	_	200	300	_	200	300	_	200	300	μs
START-UP8	DELAY		3.5	6	_	3.5	6	_	3.5	6	ms
	OVERSHOOT ¹	_	0	25	_	0	50	_	0	50	mV p
C _{OUT}	Tc=25°C ^{1,9}	_	_	500	_	_	500	_	_	500	μF

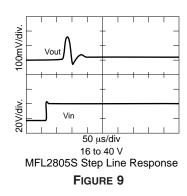

Notes

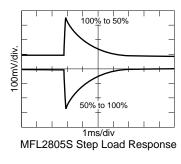

1. Guaranteed by design, not tested.

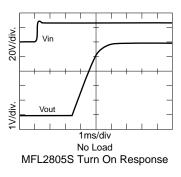

- Up to 70% of the total output power is available from either output providing the opposite output is simultaneously carrying 30% of the total power.
- 3. Effect on negative Vout from 50%/50% loads to $\,$ 70%/30% or 30%/70% loads.
- 4. Effect on negative Vout from 50%/50% loads to +Pout=50%, -Pout=10%.
- Unit will shut down above approximately 45V but will be undamaged and will restart when voltage drops into normal range.
- 6. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 7. Transition time \geq 10 μ s.
- 8. Tested on release from inhibit.
- 9. Shall not compromise DC performance


28 VOLT INPUT - 65 WATT


Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.







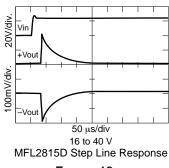
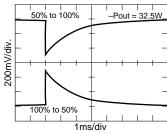



FIGURE 10

FIGURE 12

28 VOLT INPUT - 65 WATT

Typical Performance Curves: 25°C Tc , 28 VDC Vin, 100% load, free run, unless otherwise specified.

MFL2815D Step Load Response

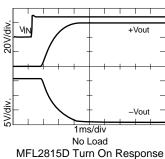


FIGURE 14

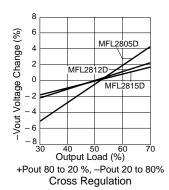
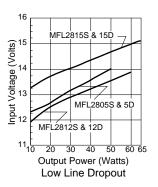
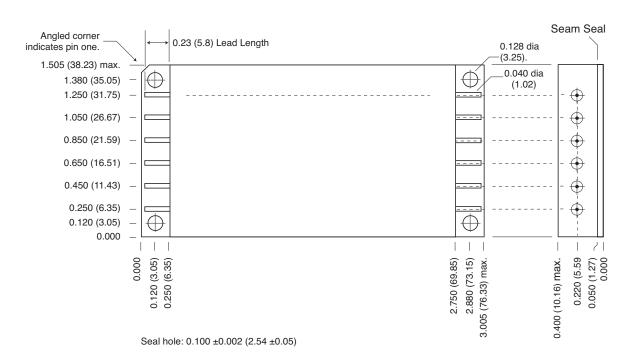


FIGURE 15




FIGURE 16

28 VOLT INPUT - 65 WATT

TOP VIEW CASE U

Flanged case, short-leaded

*Does not require designator in Case Option position of model number.

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold; compression glass seal

Case U, Rev C, 20060302

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice.

Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 17: CASE U

28 VOLT INPUT - 65 WATT

883, CLASS H, QML PRODUCTS - ELEMENT EVALUATION

ELEMENT EVALUATION					
TEST PERFORMED (COMPONENT LEVEL)	STANI (NON-C M/S ²		CLASS H, QML M/S ² P ³		
Element Electrical (probe)	yes	no	yes	yes	
Element Visual	no	no	yes	yes	
Internal Visual	no	no	yes	no	
Final Electrical	no	no	yes	yes	
Wire Bond Evaluation ⁴	no	no	yes	yes	
SLAM™/C-SAM: Input Capacitors only (Add'l test, not req. by H or K)	no	no	no	yes	

Definitions:

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534

SLAM™: Scanning Laser Acoustic Microscopy C-SAM: C - Mode Scanning Acoustic Microscopy

Notes:

- 1. Non-QML products do no meet all of the requirements of MIL-PRF-38534
- 2. M/S = Active components (Microcircuit and Semiconductor Die)
- 3. P = Passive components
- 4. Not applicable to EMI filters that have no wire bonds

28 VOLT INPUT - 65 WATT

883, CLASS H, QML PRODUCTS – ENVIRONMENTAL SCREENING

TEST	125°C STANDARD non-QML	125°C /ES non-QML	Class H /883 QML
Pre-cap Inspection			
Method 2017, 2032	yes	yes	yes
Temperature Cycle (10 times)			
Method 1010, Cond. C, -65°C to 150°C, ambient	no	no	yes
Method 1010, Cond. B, -55°C to 125°C, ambient	no	yes	no
- Motified 1010, Octid. 2, 00 0 to 120 0, difficient	110	you	110
Constant Acceleration			
Method 2001, 3000 g	no	no	yes
Method 2001, 500g	no	yes	no
		,	
Burn-In			
Method 1015, 160 hours at 125°C case, typical	no	no	yes
96 hours at 125°C case, typical	no	yes	no
Final Electrical Test MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C case	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
Hermeticity Test			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no	no
Final Visual Inspection			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

