

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

HMC674LC3C* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits <a> □

• HMC674LC3C Evaluation Board

Documentation <a>□

Data Sheet

• HMC674LC3C: 10 GHz Latched Comparator Data Sheet

Reference Materials

Quality Documentation

 Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)

Technical Articles

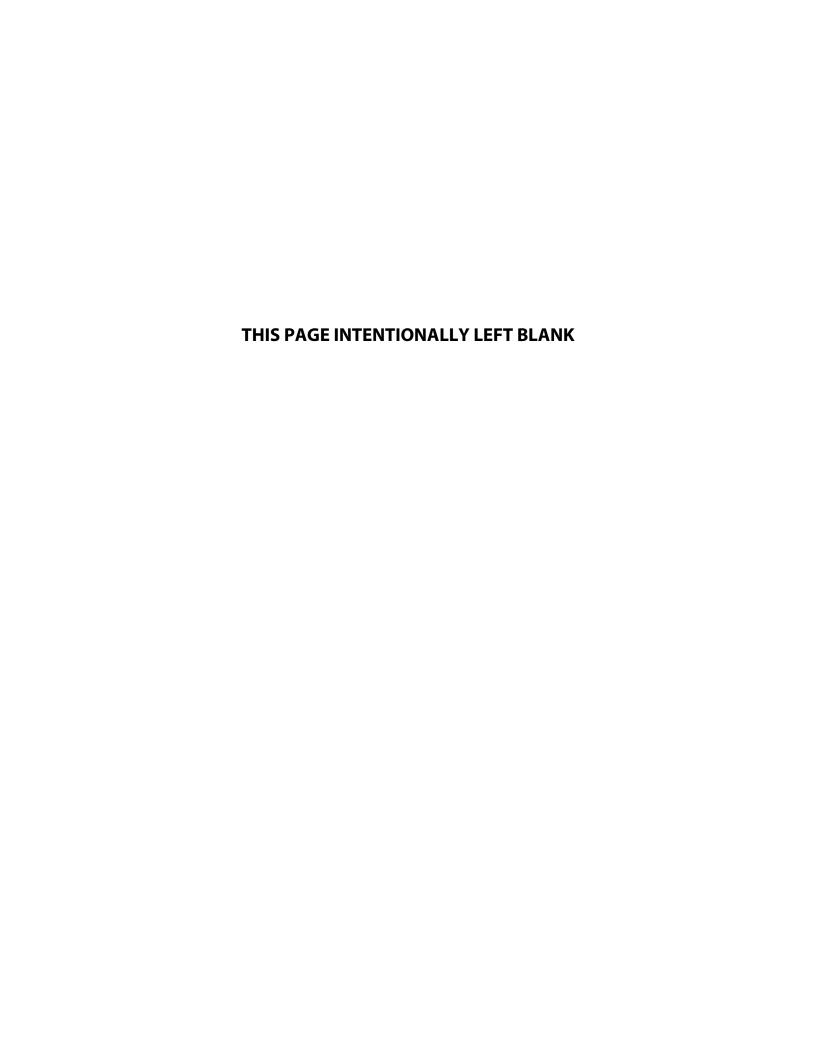
New Comparator Product Line Targets Medical, Industrial & ATE

Design Resources <a>□

- HMC674LC3C Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

Discussions <a>□

View all HMC674LC3C EngineerZone Discussions

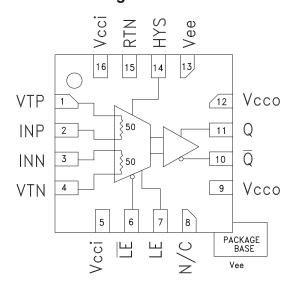

Sample and Buy -

Visit the product page to see pricing options

Technical Support <a> □

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.



Typical Applications

The HMC674LC3C is ideal for:

- ATE Applications
- High Speed Instrumentation
- Digital Receiver Systems
- Pulse Spectroscopy
- High Speed Trigger Circuits
- Clock & Data Restoration

Functional Diagram

Features

Equivalent Input Bandwidth: 10 GHz

Propagation Delay: 85 ps

Overdrive & Slew Rate Dispersion: 10 ps

Minimum Pulse Width: 60 ps

Resistor Programmable Hysteresis

Differential Latch Control
Power Dissipation: 140 mW
RSCML Version Available

16 Lead 3x3 mm SMT Package: 9 mm²

General Description

The HMC674LC3C is а SiGe monolithic, ultra fast comparator. The comparator supports operation while providing propagation delay and 60 ps minimum pulse width with 0.2 ps rms random jitter (RJ). Overdrive and slew rate dispersion are typically 10 ps, making the device ideal for a wide range of applications from ATE to broadband communications. The output stages are designed to directly drive 400 mV into 50 ohms terminated to Vtt = (Vcco - 2.0 V). The HMC674LP3E features high speed latch and programmable hysteresis and may be configured to operate in either latch mode, or as a tracking comparator.

Electrical Specifications $T_A = +25^{\circ}\text{C}$, Vcci = +3.3 V, Vcco = +2.0 V, Vee = -3 V, $V_{tt} = 0 \text{ V}$

Parameter	Conditions	Min.	Тур.	Max	Units
Input Voltage Range		-2		+2	V
Input Differential Voltage		-1.75		1.75	V
Input Offset Voltage (V _{OS})			±5		mV
Input Offset Voltage, Temperature Coefficient			15		μV / °C
Input Bias Current			15		uA
Input Bias Current Temperature Coefficient			50		nA / °C
Input Offset Current			4		μA
Input Impedance			50		Ω
Common Mode Input Impedance			350		ΚΩ
Differential Input Impedance			15		ΚΩ
Active Gain			48		dB
Common Mode Rejection Ratio			80		dB
Hysteresis	Rhys = ∞		±1		mV

Latch Enable Characteristics

Parameter	Conditions	Min.	Тур.	Max	Units
Latch Enable Input Impedance	Each Pin		8		ΚΩ
Latch Enable to Output Delay, t _{PLOL} , t _{PLOH}	VOD = 200 mV		85		ps
Latch Enable Minimum Pulse Width, t _{PL}	VOD = 200 mV		20		ps
Latch Enable Input Range	VOD = 200 mV	1.6		2.4	V
Latch Setup Time, t _S	VOD = 200 mV		45		ps
Latch Hold Time, t _H			-42		ps

DC Output Characteristics, $Vcco = +2.0 \text{ V}, V_{tt} = 0 \text{ V}$

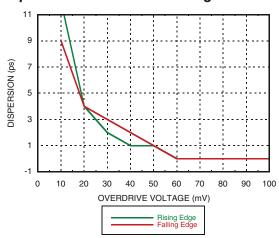
Parameter	Conditions	Min.	Тур.	Max	Units
Output Voltage High Level, Voh		1.03	1.09	1.14	V
Output Voltage Low Level, Vol		0.65	0.71	0.81	V
Output Voltage Differential Swing		440	760	980	mV _{pp}

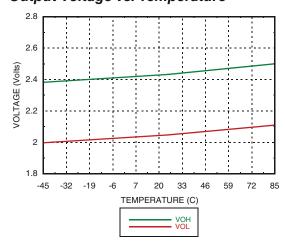
AC Performance

Parameter	Conditions	Min.	Тур.	Max	Units
Propagation Delay - t _{PD} , t _{PDL} , t _{PDH}	VOD = 500 mV	80	85	110	ps
Propagation Delay, Temperature Coefficient			0.45		ps/°C
Propagation Delay Skew (Rising to Falling Transition)	VOD - 500 mV		10		ps
VOD ^[1] Dispersion	50 mV <vod <1v<="" td=""><td></td><td>10</td><td></td><td>ps</td></vod>		10		ps
t _{PD} vs. Common Mode Dispersion, -1.75 V <vcm <1.75="" td="" v<=""><td>VOD = 500 mV</td><td></td><td>8</td><td></td><td>ps</td></vcm>	VOD = 500 mV		8		ps
Noise (RTI)			5.9		nV/√(Hz) RTI
Equivalent Input Bandwidth [2]		8.6	9.3	12	GHz
Deterministic Jitter (pp)	Deterministic Jitter at 10 Gbps with ±100 mV Overdrive		2		ps
Random Jitter (rms)	Random Jitter at 10 Gbps with ±100 mV Overdrive		0.2		ps rms
Input Signal Minimum Pulse Width	V _{CM} = 0; ±100 mV Overdrive		60		ps
Q / QB Rise Time	From 20% to 80%		24		ps
Q / QB Fall Time	From 20% to 80%		15		ps

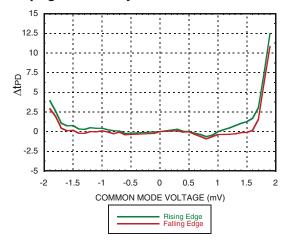
^[1] VOD is the input overdrive voltage, for example, $(V_{INP} - V_{INN} - V_{OS})$ where $V_{OS} = input$ offset voltage.

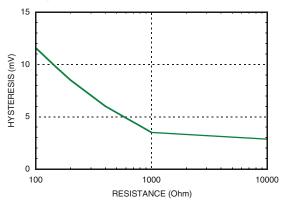
^[2] Equivalent Input Bandwidth is calculated with the following formula: Bweq=0.22/J (TRCOMP²-TRIN²) where TRIN is the 20%/80% transition time of a quasi-Gaussian signal applied to the comparator input, and TRCOMP is the effective transition time digitized by the comparator.



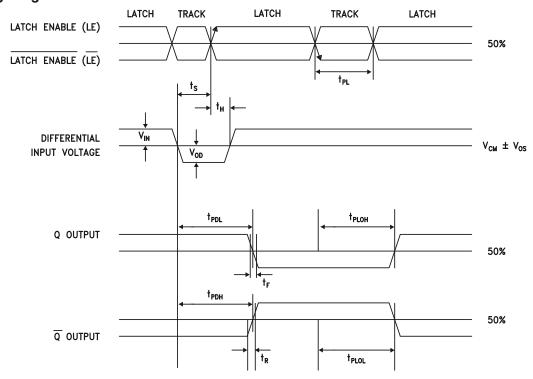

Power Supply Requirements

Parameter	Conditions	Min.	Тур.	Max	Units
Vcci		3.135	3.3	3.465	V
Vcco		1.0	2.0	2.5	V
Vee		-3.15	-3.0	-2.85	V
Input Supply Current, Icci			9		mA
Output Supply Current, Icco			45		mA
Vee Current, lee			19		mA
Power Dissipation, Pd			140		mW
PSRR, Vcci			38		dB
PSRR, Vee			38		dB


Dispersion vs. Overdrive Voltage


Output Voltage vs. Temperature

Propagation Delay vs. Common Mode



Comparator Hysteresis vs. Rhys Control Resistor

Timing Diagram

Timing Descriptions

Symbol	Timing	Description
t _{PDH}	Input to output high delay	Propagation delay measured from the time the input signal crosses the reference (± the input offset voltage) to the 50% point of an output low-to-high transition.
t _{PDL}	Input to output low delay	Propagation delay measured from the time the input signal crosses the reference (± the input offset voltage) to the 50% point of an output high-to-low transition.
t _{PLOH}	Latch enable to output high delay	Propagation delay measured from the 50% point of the latch enable signal high-to-low transition to the 50% point of an output low-to-high transition.
t _{PLOL}	Latch enable to output low delay	Propagation delay measured from the 50% point of the latch enable signal high-to-low transition to the 50% point of an output high-to-low transition.
t _H	Minimum hold time	Minimum time after the positive transition of the latch enable signal that the input signal must remain unchanged to be acquired and held at the outputs.
t _{PL}	Minimum latch enable pulse width	Minimum time that the latch enable signal must be low to acquire an input signal change.
t _S	Minimum setup time	Minimum time before the positive transition of the latch enable signal that an input signal change must be present to be acquired and held at the outputs.
t _R	Output rise time	Amount of time required to transition from a low to a high output as measured at the 20% and 80% points.
t _F	Output fall time	Amount of time required to transition from a high to a low output as measured at the 20% and 80% points.
V _{OD}	Voltage overdrive	Difference between the input voltages V_{INP} and $V_{\text{INN-}}$

Operational Description

The HMC674LC3C is a Latched Comparator with 10 GHz equivalent input bandwidth. The device is comprised of three blocks: 1) An input amplifier, 2) A latch, and 3) An Output Buffer. The latching circuit is level sensitive, and consists of a single high-speed latch. The HMC674LC3C comparator supports 10 Gb/s operation. The minimum input data latching pulse width is 60 ps.

The HMC674LC3C operates in either Track (Transparent) Mode, where the output follows the logical value of the input, or the Latch (Hold) Mode, where the output value is held to the logical value of the comparison result of the input just prior to (LE - LE_bar) going HI. Track Mode operation is selected by either 1) (LE - LE_bar) LO, or 2) LE and LE_bar inputs floating. Latch Mode is selected by (LE - LE_bar) HI. The input impedance of the LE and LE_bar inputs is 8 k ohms, but these inputs can be terminated with 50 ohm external resistors if desired.

When DC coupled, the clock inputs operate at an input common mode voltage of 2 V. In this case, any termination resistors would ideally be returned to 2 V. If the clock is AC coupled to the device, the input termination resistors can be returned to ground.

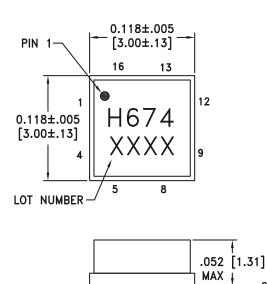
Power Sequencing

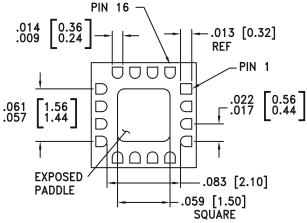
As long as the input signal is not near the -2 V extreme, either Vcc or Vee can be powered on first. However, if the input voltage is more negative than -1.8 V, we recommend the following power-up sequence.

- 1) Vee
- 2) Vcci and Vcco (if Vcco = Vcci)
- 3) Vcco (if different than ground).

Power down would be the reverse of this sequence.

It is also recommended that the device be powered before applying the input signal and also that the input signal be removed prior to power down. This is most important if any of the inputs are more negative than -1.8 V.




Absolute Maximum Ratings

_	
Input Supply Voltage (Vcci to GND)	-0.5 V to +4 V
Output Supply Voltage (Vcco to GND)	-0.5 V to +4 V
Positive Supply Voltage Differential (Vcci - Vcco)	-0.5 V to +3.3 V
Input Voltage	-2 V to +2 V
Differential Input Voltage	-2 V to +2 V
Input Voltage, Latch Enable	-0.5 V to Vcci +0.5 V
Applied Voltage (HYS)	Vee to GND
Maximum Input Current	±20 mA
Output Current	40 mA
Junction Temperature	125°C
Continuous Pdiss (T = 85°C) (Derate 20.4 mW/°C above 85°C)	0.816 W
Thermal Resistance (Rth) (Junction to Lead)	49°C/W
Storage Temperature	-65°C to +150°C
Operating Temperature	-40°C to +85°C
ESD Sensitivity (HBM)	Class 1A

Outline Drawing

BOTTOM VIEW

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
- ${\it 6.}$ ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO Vee.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC674LC3C	Alumina, White	Gold over Nickel	MSL3 ^[1]	H674 XXXX

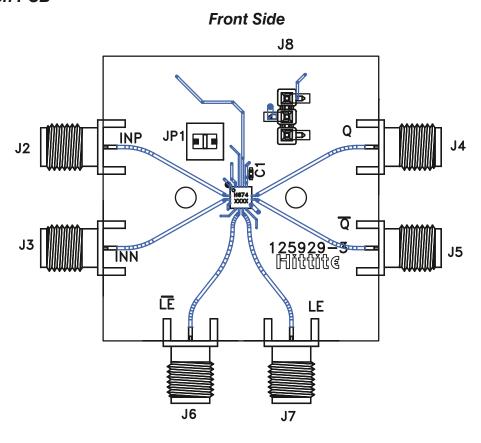
SEATING

PLANE

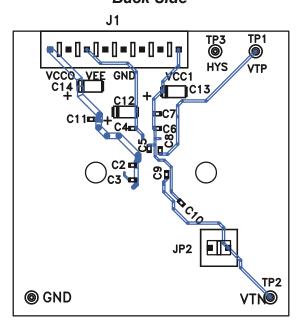
-C-

^[1] Max peak reflow temperature of 260°C

^{[2] 4-}Digit lot number XXXX



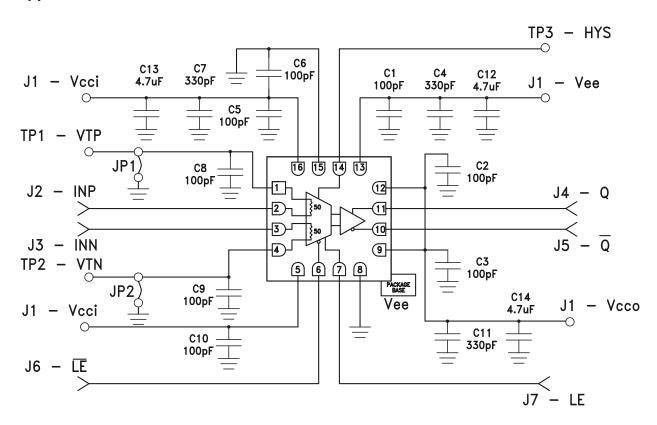
Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1	VTP	Termination resistor return pin for Vp Input.	VTP,
2	INP	Non-Inverting analog input	V I N 50 Ω \$
3	INN	Inverting analog input	INP,
4	VTN	Termination resistor return pin for Vn input	
5, 16	Vcci	Positive supply voltage input stage.	
6	ΙĒ	Latch enable bar input pin, inverting side. Refer to the Operational Description for more details.	Vcci LE,LE O
7	LE	Latch enable input pin, non-inverting side. Refer to the Operational Description for more details.	Vee
8	N/C	Pin is not connected inside the package. Connect package pin to GND for improved noise.	
9, 12	Vcco	Positive supply voltage for the output stage.	
10	ā	Inverting output. Q bar is at logic low if the analog voltage at the non-inverting input, INP, is greater than the analog voltage at the inverting input, INN, provided that the comparator is in compare mode. Refer to the Operational Description for more details.	Vcco
11	Q	Non-inverting output. Q is at logic high if the analog voltage at the non-inverting input, INP, is greater than the analog voltage at the inverting input, INN, provided that the comparator is in compare mode. Refer to the Operational Description for more details	<u>a</u> ,
14	HYS	Hysteresis Control pin. This pin should be left disconnected for zero hysteresis. Connect to vee with a resistor to add the desired amount of hysteresis. Refer to hysteresis graph to determine the correct sizing of Rhys hysteresis control resistor.	O HYS
13	Vee	Negative power supply, -3 V.	
15	RTN	Return for ESD protection.	
	Package Base	Exposed paddle must be connected to Vee.	

Evaluation PCB

Back Side

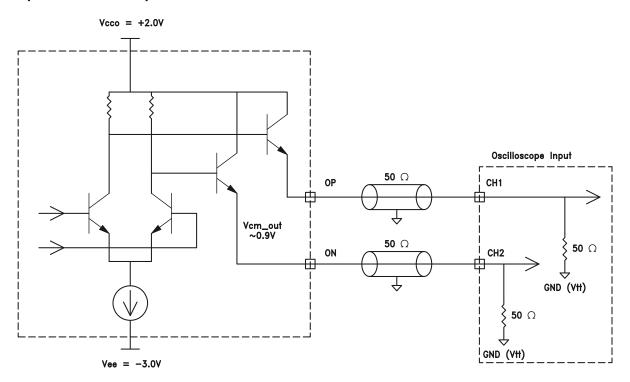
List of Materials for Evaluation PCB 125932 [1]


Item	Description
J1	8 Pos. Vertical TIN
J2 - J7	2.92 mm 40 GHz Jack
J8	Terminal Strip, Single Row 3 Pin SMT
JP1, JP2	2 Pos. Vertical TIN
C1 - C3, C5, C6, C8 - C10	100 pF Capacitor, 0402 Pkg.
C4, C7, C11	330 pF Capacitor, 0402 Pkg.
C11 - C13	4.7 uF Tantalum
TP1 - TP4	DC Pin, Swage Mount
U1	HMC674LC3C Comparator
PCB	125929 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes in order to provide good RF grounding to 10 GHz. The evaluation circuit board shown is available from Hittite upon request.


Application Circuit

Application Circuit: Output Interfacing

Output to Oscilloscope

