- $5-\Omega$ Switch Connection Between Two Ports
 - TTL-Compatible Input Levels
 - Designed to Be Used in Level-Shifting Applications
 description/ordering information

The SN74CBTD3861 provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. A diode to V_{CC} is integrated on the die to allow for level shifting from $5-\mathrm{V}$ signals at the device inputs to $3.3-\mathrm{V}$ signals at the device outputs.

The device is organized as one 10 -bit switch with a single output-enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is low, the switch is on, and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open, and the high-impedance state exists between the two ports.

DB, DBQ, DGV, DW, OR PW PACKAGE (TOP VIEW)

NC 1	${ }_{1} \cup_{24}$	V_{CC}
$1[$	$2 \quad 23$	OE
A2 3	322	B1
-	421	B2
A4	520	B3
$5{ }^{6}$	$6 \quad 19$	B4
A6 7	$7 \quad 18$	B5
$7{ }^{\text {a }}$	8	B6
8	916	B7
A9	$10 \quad 15$	B8
A10	$11 \quad 14$	B9
GND	$12 \quad 13$	B10

NC - No internal connection

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube	SN74CBTD3861DW	CBTD3861
		Tape and reel	SN74CBTD3861DWR	
	SSOP - DB	Tape and reel	SN74CBTD3861DBR	CC861
	SSOP (QSOP) - DBQ	Tape and reel	SN74CBTD3861DBQR	CBTD3861
	TSSOP - PW	Tape and reel	SN74CBTD3861PWR	CC861
	TVSOP - DGV	Tape and reel	SN74CBTD3861DGVR	CC861

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INPUT OE	FUNCTION
L	A port $=$ B port
H	Disconnect

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (see Note 1) .. -0.5 V to 7 V
Continuous channel current ... 128 mA

Package thermal impedance, θ_{JA} (see Note 2): DB package 63² C / W
DBQ package .. $61^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $86^{\circ} \mathrm{C} / \mathrm{W}$
DW package $46^{\circ} \mathrm{C} / \mathrm{W}$
PW package $88^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

		MIN	MAX
V_{CC}	UNIT		
V_{IH}	High-level control input voltage	4.5	5.5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	2	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-40	8

In applications with fast edge rates, multiple outputs switching, and operating at high frequencies, the output may have little or no level-shifting effect.
NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{l}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}		See Figure 2						
I		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND				± 1	$\mu \mathrm{A}$
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=0$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			1.5	mA
$\Delta_{\text {l }} \mathrm{CC}^{\ddagger}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input at 3.4 V,	Other inputs at V_{CC} or GND			2.5	mA
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0				2.5		pF
$\mathrm{Cio}_{\mathrm{io}}$ (OFF)		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$			4		pF
$\mathrm{ron}^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$	I $=64 \mathrm{~mA}$		5	7	Ω
		I $=30 \mathrm{~mA}$			5	7		
		V I $=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		20	50		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
$t_{\text {pd }}{ }^{\text {I }}$	A or B	B or A		0.35	ns
ten	$\overline{\mathrm{OE}}$	A or B	2.6	10	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	1	6	ns

[^0]
PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{d i s}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as ten.
G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE

Figure 2. V_{OH} Values

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
74CBTD3861DBQRE4	ACTIVE	SSOP	DBQ	24	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CBTD3861	Samples
74CBTD3861DBQRG4	ACTIVE	SSOP	DBQ	24	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CBTD3861	Samples
SN74CBTD3861DBQR	ACTIVE	SSOP	DBQ	24	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CBTD3861	Samples
SN74CBTD3861DBR	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861DBRG4	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861DGVR	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861DW	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBTD3861	Samples
SN74CBTD3861DWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBTD3861	Samples
SN74CBTD3861DWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBTD3861	Samples
SN74CBTD3861PW	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861PWE4	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861PWG4	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861PWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples
SN74CBTD3861PWRE4	ACTIVE	TSSOP	PW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CC861	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annal basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

W1

TAPE AND REEL INFORMATION
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN74CBTD3861DBQR	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74CBTD3861DBR	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1
SN74CBTD3861DGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74CBTD3861DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
SN74CBTD3861PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CBTD3861DBQR	SSOP	DBQ	24	2500	367.0	367.0	38.0
SN74CBTD3861DBR	SSOP	DB	24	2000	367.0	367.0	38.0
SN74CBTD3861DGVR	TVSOP	DGV	24	2000	367.0	367.0	35.0
SN74CBTD3861DWR	SOIC	DW	24	2000	367.0	367.0	45.0
SN74CBTD3861PWR	TSSOP	PW	24	2000	367.0	367.0	38.0

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

DBQ (R-PDSO-G24) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$ per side.
D. Falls within JEDEC MO-137 variation AE.

PW (R-PDSO-G24)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153
5 PW (R—PDSO-G24)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community
www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

[^0]: IThe propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

