- SN75LBC031 Meets Standard ISO/DIS 11898 (up to 500 k Baud)
- Driver Output Capability at 50 mA
- Wide Positive and Negative Input/output Bus Voltage Range
- Bus Outputs Short-Circuit-Protected to Battery Voltage and Ground
- Thermal Shutdown
- Available in Q-Temp Automotive
- HighRel Automotive Applications
- Configuration Control/Print Support
- Qualification to Automotive Standards


## description

The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately $160^{\circ} \mathrm{C}$. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to $\mathrm{V}_{\mathrm{CC}}$. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.

The SN75LBC031 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The SN65LBC031 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN65LBC031Q is characterized for operation over the automotive temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

## SN65LBC031, SN65LBC031Q, SN75LBC031

HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS
SLRS048A - MAY 1998 - REVISED APRIL 2000
logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

| Logic supply voltage, $\mathrm{V}_{\mathrm{CC}}$ (see Note 1) | 7 V |
| :---: | :---: |
| Bus terminal voltage | -5 V to 20 V |
| Input current at TX and ASC terminal, $I_{\text {I }}$ | $\pm 10 \mathrm{~mA}$ |
| Input voltage at TX and ASC terminal, $\mathrm{V}_{1}$ | $2 \times V_{C C}$ |
| Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}$ : SN65LBC031, SN65LBC031Q | $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |
| SN75LBC031 | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| Operating juncation range, $\mathrm{T}_{J}$ | $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Continuous total power dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature | See Dissipation Rating Table |
| Storage temperature range, $\mathrm{T}_{\text {stg }}$ | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Case temperature for $10 \mathrm{sec} \mathrm{T}_{\mathrm{C}}$, D package | $260^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential bus voltage, are measured with respect to GND.
DISSIPATION RATING TABLE

| PACKAGE | $\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathrm{C}$ <br> POWER RATING | OPERATING FACTOR <br> ABOVE TC $=25^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathbf{C}}=125^{\circ} \mathbf{C}$ <br> POWER RATING |
| :---: | :---: | :---: | :---: |
| D | 725 mW | $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | 145 mW |

DISSIPATION DERATING CURVE
VS
FREE-AIR TEMPERATURE


Figure 1

## HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

SLRS048A - MAY 1998 - REVISED APRIL 2000
recommended operating conditions


NOTES: 2. All voltage values, except differential bus voltage, are measured with respect to the ground terminal.
3. For bus voltages from -5 V to -2 V and 7 V to 20 V the receiver output is stable.

SYMBOL DEFINITION

| DATA SHEET PARAMETER | DEFINITION |
| :---: | :--- |
| $\mathrm{V}_{\mathrm{O}(\text { CANHR }}$ | CANH bus output voltage (recessive state) |
| $\mathrm{V}_{\mathrm{O}(\text { CANLR })}$ | CANL bus output voltage (recessive state) |
| $\mathrm{V}_{\mathrm{O}(\text { CANHD }}$ | CANH bus output voltage (dominant state) |
| $\mathrm{V}_{\mathrm{O}(\text { CANLD })}$ | CANL bus output voltage (dominant state) |
| $\mathrm{V}_{\mathrm{O}(\text { DIFFR })}$ | Bus differential output voltage (recessive state) |
| $\mathrm{V}_{\mathrm{O}(\text { DIFFD })}$ | Bus differential output voltage (dominant state) |
| $\mathrm{V}_{\mathrm{I}(\text { ASC })}$ | Adjustable slope control input voltage |

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|  | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {O(REF) }}$ | Reference source output voltage | ${ }^{\text {I REF }}= \pm 20 \mu \mathrm{~A}$ | $0.45 \mathrm{~V}_{\mathrm{CC}}$ |  | $0.55 \mathrm{~V}_{\mathrm{CC}}$ | V |
| RO(REF) | Reference source output resistance |  | 5 |  | 10 | k $\Omega$ |
| ICC(REC) | Logic supply current, recessive state | See Figure 2, S1 closed |  | 12 | 20 | mA |
| ICC(DOM) | Logic supply current, dominant state |  |  | 55 | 80 |  |

transmitter electrical characteristics over recommended ranges of supply and operating free-air
temperature (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{O}}$ (CANHR) $\mathrm{V}_{\mathrm{O}}$ (CANLR) | Output voltage (recessive state) | See Figure 2, | S1 open | $20.5 \mathrm{~V}_{\mathrm{CC}}$ |  | 3 | V |
| $\mathrm{V}_{\text {O(DIFFR) }}$ | Differential output voltage (recessive state) |  |  | -500 | 0 | 50 | mV |
| $\mathrm{V}_{\text {O(CANHD) }}$ | Output voltage (dominant state) | See Figure 2, | S1 closed | 2.75 | 3.5 | 4.5 | V |
| $\mathrm{V}_{\text {O(CANLD }}$ | Output voltage (dominant state) |  |  | 0.5 | 1.5 | 2.25 |  |
| $\mathrm{V}_{\mathrm{O} \text { (DIFFD) }}$ | Differential output voltage (dominant state) |  |  | 1.5 | 2 | 3 |  |
| ${ }_{1 / H}$ (TX) | High-level input current (TX) | $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ |  |  | -100 | -185 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$ |  |  |  | $\pm 2$ |  |
| ${ }^{1 / H}($ ASC $)$ | High-level input current (ASC) | $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ |  |  | 100 | 165 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}$ |  |  | 200 | 340 |  |
| IIL(TX) | Low-level input current ( $\overline{\mathrm{TX}}$ ) | $\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$ |  |  | -180 | -400 | $\mu \mathrm{A}$ |
| IIL(ASC) | Low-level input current (ASC) | $\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$ |  |  | 15 | 25 | $\mu \mathrm{A}$ |
| $\mathrm{Cl}_{1}(\mathrm{TX})$ | $\overline{\text { TX input capacitance }}$ |  |  |  | 8 |  | pF |
| l (ssH) | CANH short circuit output current | $\mathrm{V}_{\mathrm{O}}(\mathrm{CANH})=-$ | V to 20 V |  | -95 | -200 | mA |
| IO(ssL) | CANL short circuit output current | $\mathrm{V}_{\mathrm{O}}(\mathrm{CANL})=2$ | V to -2 V |  | 140 | 250 | mA |

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.
transceiver dynamic characteristics over recommended operating free-air temperature range and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

|  | PARAMETER | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {t }}$ (loop) | Loop time | See Figures 2 and 3 , S1 closed, | $\mathrm{V}_{\mathrm{I}(\mathrm{ASC})}=0 \mathrm{~V}$ or open circuit, S2 open |  |  | 280 | ns |
|  |  | See Figures 2 and 3 , S1 closed, | $\begin{aligned} & \mathrm{V}_{1(\mathrm{ASC})}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~S} 2 \text { closed } \end{aligned}$ |  |  | 400 | ns |
| $\mathrm{SR}_{(\mathrm{RD})}$ | Differential-output slew rate (recessive to dominant) | See Figures 2 and 4, S1 closed, | $\mathrm{V}_{\text {I(ASC }}=0$ or open circuit, S2 open |  | 35 |  | V/us |
|  |  | See Figures 2 and 4, S1 closed, | $\begin{aligned} & \mathrm{V}_{1}(\mathrm{ASC})=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~S} 2 \text { closed } \end{aligned}$ |  | 10 |  | V/us |
| $\mathrm{SR}_{(\mathrm{DR})}$ | Differential-output slew rate (dominant to recessive) | See Figures 2 and 4, S1 closed, | $\begin{aligned} & \mathrm{V}_{\mathrm{I}(\mathrm{ASC})}=0 \text { or open circuit, } \\ & \text { S2 open } \end{aligned}$ |  | 10 |  | V/us |
|  |  | See Figures 2 and 4, S1 closed, | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{ASC})=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~S} 2 \text { closed } \end{aligned}$ |  | 10 |  | V/us |
| $\mathrm{t}_{\mathrm{d} \text { (RD) }}$ | Differential-output delay time | See Figure 2, | S1 closed |  | 55 |  | ns |
| $\mathrm{t}_{\mathrm{d}}(\mathrm{DR})$ |  |  |  |  | 160 |  | ns |
| $t_{\text {pd }}$ (RECRD) | Receiver propagation delay time | See Figures 2 and 5 |  |  | 90 |  | ns |
| tpd(RECDR) |  |  |  |  | 55 |  | ns |

NOTE 4: Receiver input pulse width should be $>50 \mathrm{~ns}$. Input pulses of $<30 \mathrm{~ns}$ are suppressed.

## HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

SLRS048A - MAY 1998 - REVISED APRIL 2000
receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

|  | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IT }}$ (REC) | Differential input threshold voltage for recessive state | $V_{\text {IC }}=-2 \mathrm{~V}$ to 7 V |  |  | 500 | mV |
| VIT(DOM) | Differential input threshold voltage for dominant state |  | 900 |  |  |  |
| $\mathrm{V}_{\text {hys }}$ | Recessive-dominant input hysteresis |  | 100 | 180 |  | mV |
| $\mathrm{V}_{\mathrm{OH}}(\mathrm{RX})$ | High-level output voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{DIFF})}=500 \mathrm{mV}, \\ & \mathrm{IOH}=-400 \mu \mathrm{~A} \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ |  | VCC | V |
| VOL(RX) | Low-level output voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{DIFF})}=900 \mathrm{mV}, \\ & \mathrm{IOL}=1 \mathrm{~mA} \end{aligned}$ | 0 |  | 0.5 | V |
| $\mathrm{r}_{1}$ (REC) | CANH and CANL input resistance in recessive state | dc, no load | 5 |  | 50 | k $\Omega$ |
| ${ }^{\text {II(DIFF) }}$ | Differential CANH and CANL input resistance in recessive state | dc, no load | 10 |  | 100 | k $\Omega$ |
| $\mathrm{C}_{\mathrm{i}}$ | CANH and CANL input capacitance |  |  | 20 |  | pF |
| $\mathrm{C}_{\mathrm{i}}(\mathrm{DHL})$ | Differential CANH and CANL input capacitance |  |  | 10 |  | pF |

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

## PARAMETER MEASUREMENT INFORMATION



NOTE A: The input pulse is supplied to $\overline{T X}$ by a generator having a $t_{r}$ and $t_{f}=5 \mathrm{~ns}$.
Figure 2. Test Circuit

PARAMETER MEASUREMENT INFORMATION


Figure 3. Loop Time


Figure 4. Slew Rate

NOTE A: The input pulse is supplied to $\overline{T X}$ by a generator having a $t_{r}$ and $t_{f}=5 \mathrm{~ns}$.


NOTE A: The input pulse is supplied as VDIFF using CANH and CANL respectively by a generator having a $\mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$.

Figure 5. Receiver Delay Times


Figure 6. Transient Stress Capability Test Circuit

PARAMETER MEASUREMENT INFORMATION


Figure 7. Transient Stress Capability Waveform
Table 1. Test Circuit Results According to DIN 40839

| TEST PULSE | TRANSIENT <br> MAGNITUDE <br> $\mathbf{V S}_{\mathbf{S}}$ | SOURCE <br> IMPEDANCE <br> RSOURCE | PULSE WIDTH <br> $\mathbf{t}_{\mathbf{d}}$ <br> (see Note 5) | PULSE RISE <br> TIME, $\mathbf{t}_{\mathbf{r}}$ <br> (see Note 6) | PULSE TIME, <br> $\mathbf{t}_{\mathbf{2}}$ <br> (see Figure 7) | REPETITION <br> PERIOD, $\mathbf{t}_{\mathbf{1}}$ <br> (see Figure 7) | NUMBER OF <br> PULSES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -100 V | $10 \Omega$ | 2 ms | $1 \mu \mathrm{~s}$ | 200 ms | 5 s |  |
| 2 | 100 V | $10 \Omega$ | $50 \mu \mathrm{~s}$ | $1 \mu \mathrm{~s}$ | 200 ms | 5000 |  |
| 3 a | -150 V | $50 \Omega$ | $0.1 \mu \mathrm{~s}$ | 5 ns | $100 \mu \mathrm{~s}$ | 5 s | $100 \mu \mathrm{~s}$ |
| 3 b | 100 V | $50 \Omega$ | $0.1 \mu \mathrm{~s}$ | 5 ns | $100 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ | See Note 7 |
| 5 | 60 V | $1 \Omega$ | 400 ms | 5 ms | - | - | See Note 7 |

NOTES: 5. Measured from $10 \%$ on rising edge to $10 \%$ on falling edge
6. Measured from $10 \%$ to $90 \%$ of pulse
7. Pulse package for a period of $3600 \mathrm{~s}, 10 \mathrm{~ms}$ pulse time, 90 ms stop time

## APPLICATION INFORMATION



Figure 8. Typical SN75LBC031 Application

## HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

## MECHANICAL DATA

D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

## PACKAGING INFORMATION

| Orderable Device | Status (1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan <br> (2) | Lead/Ball Finish <br> (6) | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ} \mathrm{C}$ ) | Device Marking <br> (4/5) | Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LBC031D | ACTIVE | SOIC | D | 8 | 75 | TBD | CU NIPDAU | Level-1-220C-UNLIM | -40 to 85 | 6LB031 | Samples |
| SN65LBC031DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | 6LB031 | Samples |
| SN65LBC031DRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM |  | 6LB031 | Samples |
| SN65LBC031P | OBSOLETE | PDIP | P | 8 |  | TBD | Call TI | Call TI | -40 to 85 |  |  |
| SN65LBC031QD | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 6LB031Q | Samples |
| SN65LBC031QDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 6LB031Q | Samples |
| SN65LBC031QDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LB031Q | Samples |
| SN65LBC031QDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS \& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LB031Q | Samples |
| SN75LBC031D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 7LB031 | Samples |
| SN75LBC031DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 7LB031 | Samples |
| SN75LBC031P | OBSOLETE | PDIP | P | 8 |  | TBD | Call TI | Call TI | 0 to 70 |  |  |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1\% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION


*All dimensions are nominal

| Device | Package <br> Type | Package <br> Drawing | Pins | SPQ | Reel <br> Diameter <br> $(\mathbf{m m})$ | Reel <br> Width <br> W1 $(\mathbf{m m})$ | A0 <br> $(\mathbf{m m})$ | B0 <br> $(\mathbf{m m})$ | K0 <br> $(\mathbf{m m})$ | P1 <br> $(\mathbf{m m})$ | W <br> $(\mathbf{m m})$ | Pin1 <br> Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LBC031QDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| SN65LBC031QDRG4 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| SN75LBC031DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |


*All dimensions are nominal

| Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LBC031QDR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 |
| SN65LBC031QDRG4 | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 |
| SN75LBC031DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 |

$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed $0.006(0,15)$ each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side
E. Reference JEDEC MS-012 variation AA.

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

## Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

## Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

## TI E2E Community

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

