#### A STATE OF A

查询LTC2050供应商 **LINEAR** TECHNOLOGY <u>ま业PCB打样IIIIIア料例</u>控制置LEASE Final Electrical Specifications LTC2050

Zero-Drift Operational Amplifier in SOT-23

November 1999

### FEATURES

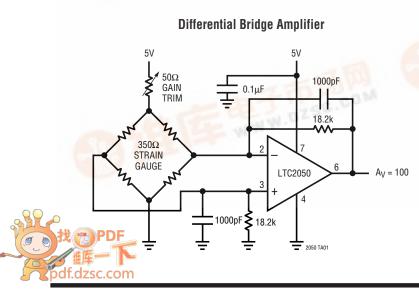
- SOT-23 Package
- Maximum Offset Voltage of 3µV
- Maximum Offset Voltage Drift of 30nV/°C
- Noise: 1.5µV<sub>P-P</sub> (0.1Hz to 10Hz Typ)
- Voltage Gain: 140dB (Typ)
- PSRR: 130dB (Typ)
- CMRR: 130dB (Typ)
- Supply Current: 0.8mA (Typ)
- Single Supply Operation: 2.7V to 6V
- Extended Common Mode Input Range
- Output Swings Rail-to-Rail
- Overload Recovery Time: 2ms (Typ) 1

# APPLICATIONS

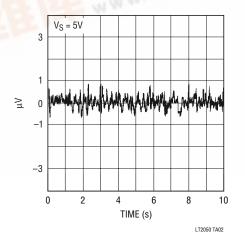
- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition

TYPICAL APPLICATION

DC Accurate RC Active Filters


# DESCRIPTION

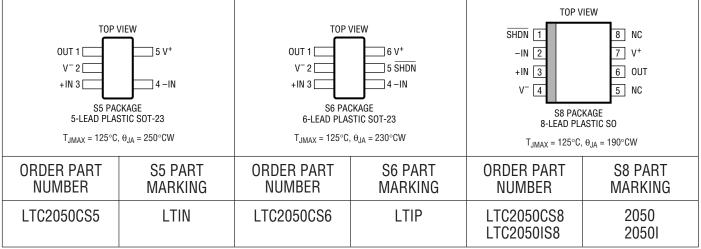
The LTC<sup>®</sup>2050 is a low drift operational amplifier available in the 5- or 6-lead SOT-23 and SO-8 packages. It operates from a single 2.7V supply while still supporting 5V applications. The power consumption is 800µA and the versions in the 6-lead SOT-23 and SO-8 packages offer power shutdown (active low).


The LTC2050, despite its miniature size, features uncompromising DC performance. The typical input offset voltage and offset drift are  $0.5\mu$ V and  $10nV/^{\circ}$ C. The almost zero DC offset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130dB.

The input common mode voltage ranges from the negative supply up to 1V from the positive supply. The LTC2050 also has an enhanced output stage capable of driving loads as low as  $1k\Omega$  to both supply rails. The open-loop gain, loaded with  $1k\Omega$ , is in excess of 140dB. The LTC2050 also features a  $1.5\mu V_{P-P}$  DC to 10Hz noise and a 3MHz gain bandwidth product.

T, LTC and LT are registered trademarks of Linear Technology Corporation.




Input Referred Noise 0.1Hz to 10Hz



#### ABSOLUTE MAXIMUM RATINGS (Note 1)

 Specified Temperature Range (Note 3) ...  $-40^{\circ}$ C to  $85^{\circ}$ C Storage Temperature Range ......  $-65^{\circ}$ C to  $150^{\circ}$ C Lead Temperature (Soldering, 10 sec) ......  $300^{\circ}$ C

## PACKAGE/ORDER INFORMATION



Consult factory for Military grade parts.

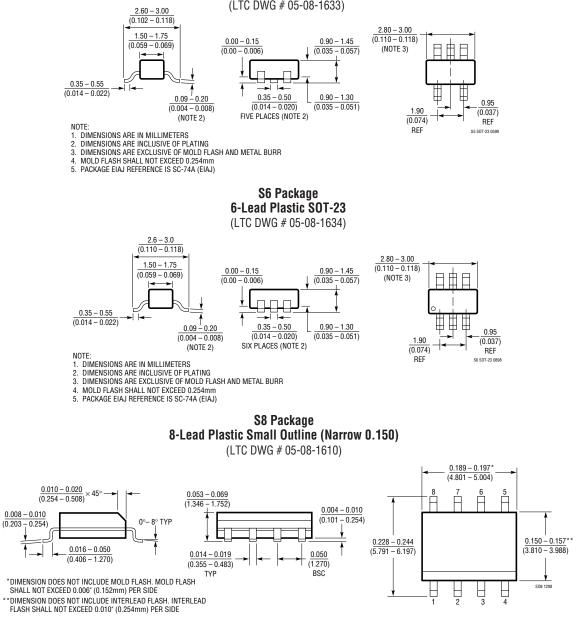
# **ELECTRICAL CHARACTERISTICS** The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T<sub>A</sub> = 25°C. V<sub>S</sub> = 3V unless otherwise noted. (Note 3)

| PARAMETER                    | CONDITIONS                                   |   | MIN  | ТҮР  | MAX   | UNITS             |
|------------------------------|----------------------------------------------|---|------|------|-------|-------------------|
| Input Offset Voltage         | (Note 2)                                     |   |      | ±0.5 | ±3    | μV                |
| Average Input Offset Drift   | (Note 2)                                     | • |      |      | ±0.03 | μV/°C             |
| Long-Term Offset Drift       |                                              |   |      | 50   |       | nV/√mo            |
| Input Bias Current           |                                              |   |      | ±20  | ±75   | pА                |
|                              |                                              | • |      |      | ±300  | pА                |
| Input Offset Current         |                                              |   |      |      | ±150  | рА                |
|                              |                                              | • |      |      | ±200  | рА                |
| Input Noise Voltage          | $R_{\rm S}$ = 100 $\Omega$ , DC to 10Hz      |   |      | 1.5  |       | μV <sub>P-P</sub> |
| Common Mode Rejection Ratio  | $V_{CM} = V^{-}$ to $V^{+} - 1.3$            |   | 115  | 130  |       | dB                |
|                              |                                              | • | 110  | 130  |       | dB                |
| Power Supply Rejection Ratio |                                              |   | 120  | 130  |       | dB                |
|                              |                                              | • | 115  | 130  |       | dB                |
| Large-Signal Voltage Gain    | $R_L = 10k$                                  |   | 120  | 140  |       | dB                |
|                              |                                              | • | 115  | 140  |       | dB                |
| Maximum Output Voltage Swing | $R_L = 2k$                                   | • | 2.85 | 2.94 |       | V                 |
|                              | R <sub>L</sub> = 10k                         | • | 2.95 | 2.98 |       | V                 |
| Slew Rate                    |                                              |   |      | 2    |       | V/µs              |
| Gain Bandwidth Product       |                                              |   |      | 3    |       | MHz               |
| Supply Current               | V <sub>SHDN</sub> = V <sup>+</sup> , No Load | • |      | 0.75 | 1.1   | mA                |
|                              | $V_{SHDN} = V^{-}$                           |   |      |      | 10    | μA                |

# **ELECTRICAL CHARACTERISTICS** The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T<sub>A</sub> = 25°C. V<sub>S</sub> = 3V unless otherwise noted. (Note 3)

| PARAMETER                       | CONDITIONS         |   | MIN                  | ТҮР  | MAX                  | UNITS |
|---------------------------------|--------------------|---|----------------------|------|----------------------|-------|
| Shutdown Pin Input Low Voltage  |                    | • |                      |      | V <sup>-</sup> + 0.5 | V     |
| Shutdown Pin Input High Voltage |                    | • | V <sup>+</sup> - 0.5 |      |                      | V     |
| Shutdown Pin Input Current      | $V_{SHDN} = V^{-}$ | • |                      | -0.5 | -3                   | μA    |
| Internal Sampling Frequency     |                    |   |                      | 7.5  |                      | kHz   |

# The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T<sub>A</sub> = 25°C. V<sub>S</sub> = 5V unless otherwise noted. (Note 3)


| PARAMETER                       | CONDITIONS                                   |   | MIN                 | ТҮР  | MAX                  | UNITS             |
|---------------------------------|----------------------------------------------|---|---------------------|------|----------------------|-------------------|
| Input Offset Voltage            | (Note 2)                                     |   |                     | ±0.5 | ±3                   | μV                |
| Average Input Offset Drift      | (Note 2)                                     | • |                     |      | ±0.03                | μV/°C             |
| Long-Term Offset Drift          |                                              |   |                     | 50   |                      | nV/√mo            |
| Input Bias Current              |                                              |   |                     |      | ±150                 | pA                |
|                                 |                                              |   |                     |      | ±300                 | рА                |
| Input Offset Current            |                                              |   |                     |      | ±300                 | рA                |
|                                 |                                              |   |                     |      | ±400                 | рА                |
| Input Noise Voltage             | $R_S = 100\Omega$ , DC to 10Hz               |   |                     | 1.5  |                      | μV <sub>P-P</sub> |
| Common Mode Rejection Ratio     | $V_{CM} = V^{-}$ to $V^{+} - 1.3$            |   | 120                 | 130  |                      | dB                |
|                                 |                                              |   | 115                 | 130  |                      | dB                |
| Power Supply Rejection Ratio    |                                              |   | 120                 | 130  |                      | dB                |
|                                 |                                              |   | 115                 | 130  |                      | dB                |
| Large-Signal Voltage Gain       | $R_L = 10k$                                  |   | 125                 | 140  |                      | dB                |
|                                 |                                              | • | 120                 | 140  |                      | dB                |
| Maximum Output Voltage Swing    | $R_L = 2k$                                   |   | 4.85                | 4.94 |                      | V                 |
|                                 | R <sub>L</sub> = 10k                         | • | 4.95                | 4.98 |                      | V                 |
| Slew Rate                       |                                              |   |                     | 2    |                      | V/µs              |
| Gain Bandwidth Product          |                                              |   |                     | 3    |                      | MHz               |
| Supply Current                  | V <sub>SHDN</sub> = V <sup>+</sup> , No Load | • |                     | 0.8  | 1.2                  | mA                |
|                                 | $V_{SHDN} = V^{-}$                           |   |                     |      | 10                   | μA                |
| Shutdown Pin Input Low Voltage  |                                              | • |                     |      | V <sup>-</sup> + 0.5 | V                 |
| Shutdown Pin Input High Voltage |                                              | • | V <sup>+</sup> -0.5 |      |                      | V                 |
| Shutdown Pin Input Current      | $V_{SHDN} = V^{-}$                           | • |                     | -0.5 | -5                   | μA                |
| Internal Sampling Frequency     |                                              |   |                     | 7.5  |                      | kHz               |

**Note 1:** Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

**Note 2:** These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing.

**Note 3:** The LTC2050C is guaranteed to meet specified performance from 0°C to 70°C and is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40°C and 85°C. The LTC2050I is guaranteed to meet the extended temperature limits.

#### PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. S5 Package 5-Lead Plastic S0T-23 (LTC DWG # 05-08-1633)



### **RELATED PARTS**

| PART NUMBER     | DESCRIPTION                                     | COMMENTS                                                                 |
|-----------------|-------------------------------------------------|--------------------------------------------------------------------------|
| LTC1049         | Low Power Zero-Drift Op Amp                     | Low Supply Current 200µA                                                 |
| LTC1050         | Precision Zero-Drift Op Amp                     | Single Supply Operation 4.75V to 16V, Noise Tested and Guaranteed        |
| LTC1051/LTC1053 | Precision Zero-Drift Op Amp                     | Dual/Quad                                                                |
| LTC1150         | ±15V Zero-Drift Op Amp                          | High Voltage Operation ±18V                                              |
| LTC1152         | Rail-to-Rail Input and Output Zero-Drift Op Amp | Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown |