19-1485; Rev 0; 4/99

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

General Description

The MAX6575L/H is a low-cost, low-current temperature sensor with a single-wire digital interface. It features accuracy of ±3°C at +25°C, ±4.5°C at +85°C, and ±5°C at +125°C. The MAX6575L/H is a monostable, externally triggered temperature sensor that allows a microprocessor (µP) to interface with up to eight temperature sensors using a single control line. Temperatures are sensed by measuring the time delay between the falling edge of the external triggering pulse and the falling edge of the subsequent pulse delays reported from the devices. Different sensors on the same I/O line use different timeout multipliers to avoid overlapping signals.

The MAX6575L/H features eight different timeout multipliers; these are selectable by using the two time-select pins on each device and choosing the "L" or "H" version. The "L" version provides four delay ranges less than 50ms. The "H" version provides four delay ranges greater than 50ms. The MAX6575L/H is available in a space-saving 6-pin SOT23 package.

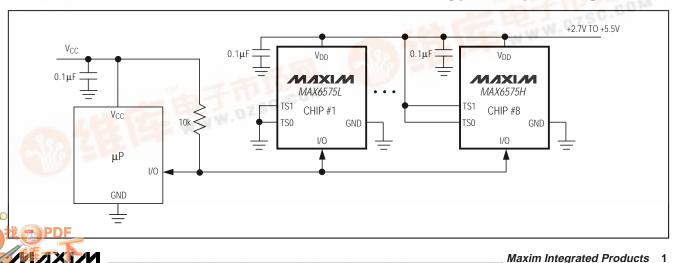
Applications

Critical µP and µC Temperature Monitoring Portable Battery-Powered Equipment Cell Phones **Battery Packs** Hard Drives/Tape Drives Networking and Telecom Equipment Medical Equipment Automotive

Features

- ♦ Simple Single-Wire Interface to µP or µC
- Multidrop up to Eight Sensors on One Wire
- ♦ ±0.8°C Accuracy at +25°C (±3°C max)
- ♦ Operates from +2.7V to +5.5V Supply Voltage
- ♦ Low 150µA (typ) Supply Current
- **♦** Standard Operating Temperature Range: -40°C to +125°C
- ♦ Small 6-Pin SOT23 Package

Ordering Information


PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK	
MAX6575LZUT	-40°C to +125°C	6 SOT23	AABG	
MAX6575HZUT	-40°C to +125°C	6 SOT23	AABH	

Selector Guide

PART	TIMEOUT MULTIPLIERS (μs/°K)
MAX6575L	5, 20, 40, 80
MAX6575H	160, 320, 480, 640

Pin Configurations appear at end of data sheet.

Typical Operating Circuit

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to GND)	Continuous Power Dissipation ($T_A = +70^{\circ}C$)
V _{DD} 0.3V to +6V	6-Pin SOT23 (derate 7.10mW/°C above +70°C)571mW
TS1, TS00.3V to (V _{DD} + 0.3V)	Operating Temperature Range40°C to +125°C
I/O0.3V to +6V	Storage Temperature Range65°C to +150°C
Input/Output Current, All Pins±20mA	Lead Temperature (soldering, 10sec)+300°C

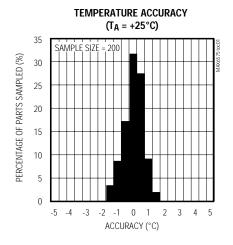
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

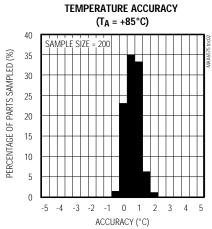
ELECTRICAL CHARACTERISTICS

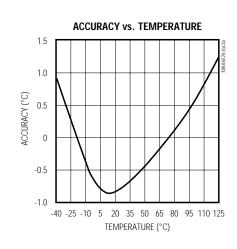
 $(V_{DD} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are specified at $T_A = +25^{\circ}\text{C}$ and $V_{DD} = +5V$, unless otherwise noted.)

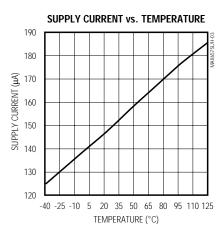
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
V _{DD} Range	V _{DD}			2.7		5.5	V	
Supply Current	IDD	V _{DD} = 5.5V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		150	250	μΑ	
	טטי	VDD = 5.5V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			400		
		T _A = -20°C	T _A = -20°C		±1.1	+7.5	°C	
Tanana anak wa Ganasa Fanasa		$T_A = 0$ °C $T_A = +25$ °C $T_A = +85$ °C		-5.5	±0.9	+5.5		
Temperature Sensor Error (Note 1)				-3.0	±0.8	+3.0		
(Note 1)				-4.5	±0.5	+4.5		
		$T_A = +125^{\circ}C$		-5.0	±0.5	+5.0		
	t _{D1}	NAAN// E7EL	V _{TS1} = GND, V _{TS0} = GND		5T			
	t _{D2}	MAX6575L, T (temp) in °K,	VTS1 = GND, VTS0 = VDD		20T			
	t _{D3}	Figure 1	V _{TS1} = V _{DD} , V _{TS0} = GND		40T			
Output Pulse Delay	t _{D4}		$V_{TS1} = V_{DD}, V_{TS0} = V_{DD}$		80T		— μs	
Output Fuise Delay	t _{D5}	MAX6575H, T (temp) in °K,	$V_{TS1} = GND, V_{TS0} = GND$		160T			
	tD6		VTS1 = GND, VTS0 = VDD		320T			
	t _{D7}	Figure 1	$V_{TS1} = V_{DD}, V_{TS0} = GND$		480T			
	t _{D8}	o o	$V_{TS1} = V_{DD}, V_{TS0} = V_{DD}$		640T			
Output Pulse Low Time	tL1-8	Figure 1			5T		μs	
Reset Pulse Width (Note 2)	treset	Figure 1		4.6		16.0	ms	
Setup Time	tsetup	Figure 1			10		μs	
Start Pulse (Note 3)	tstart	Figure 1, T _A = +	25°C	2.5			μs	
Delay Time from Trigger to Ready (Note 4)	tREADY	Figure 1				520	ms	
Glitch Immunity on I/O Input					500		ns	
Time-Select Pin Logic Levels	VIL					0.8	V	
Time-Select Pin Logic Levels	VIH			2.3				
I/O Output Voltage Low	VOI	V _{DD} > 4.5V, I _{SINK} = 3.2mA				0.4	V	
1/0 Output voltage Low	VOL	V _{DD} > 2.7V, I _{SINK} = 1.2mA				0.3	_ v	
I/O Input Voltage Low	VIL					0.8	V	
I/O Input Voltage High	VIH			2.3			V	

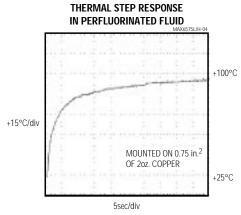
Note 1: See Temperature Accuracy histograms in Typical Operating Characteristics.

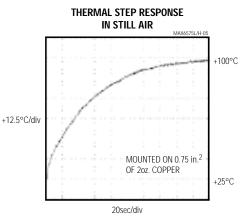

Note 2: Guaranteed by design. Not production tested.


Note 3: Limit maximum start pulse at 1ms to avoid timing overlap.


Note 4: If no reset pulse is applied.


Typical Operating Characteristics


 $(V_{DD} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$



Pin Description

PIN	NAME	FUNCTION
1	V _{DD}	Positive Supply Voltage
2	GND	Ground
3	N.C.	No Connect. Connect pin to GND or leave open.
4, 5	TS0, TS1	Time-Select Pins. Set the time delay factor by connecting TS1 and TS0 to either V _{DD} or GND. See Table 1.
6	I/O	Bidirectional Interface Pin. A time delay between when the part is initiated externally by pulling I/O low and when the part subsequently pulls I/O low, is proportional to absolute temperature (°K).

Detailed Description

The MAX6575L/H low-cost, low-current (150 μ A typ) temperature sensor is ideal for interfacing with microcontrollers or microprocessors. The MAX6575L/H is a monostable, externally triggered temperature sensor that uses a Temp \rightarrow Delay conversion to communicate with a μ P over a single I/O line. Time-select pins (TS1, TS0) permit the internal temperature-controlled oscillator (TCO) to be scaled by four preset timeout multipliers, allowing eight separate temperature sensors to share one I/O line. Different sensors on the same I/O line will use different timeout multipliers to avoid overlapping signals.

Operating the MAX6575L/H

Figure 1 illustrates the timing for the MAX6575L/H. When the device is powered up, it assumes a ready state where it awaits an external trigger at the I/O pin. The I/O pin of the MAX6575L/H has an open-drain output structure that requires a pull-up resistor to maintain the proper logic levels. Once the I/O pin is pulled low and then released, control of the I/O pin is transferred to the MAX6575L/H. The temperature conversion begins on the falling edge of the externally triggered pulse. The I/O line is pulled low at a later time. That time is determined by the device temperature and the Time Select pins (TS1, TS0). The I/O line remains low for 5Tµs, where T is the temperature in degrees Kelvin. The temperature of the device is represented by the edgeto-edge delay of the externally triggered pulse and the falling edge of the subsequent pulse originating from the device. The device can be manually reset by pulling the I/O line low for more than trest (16ms max). The device will automatically reset after a maxi-

Table 1. Time-Select Pin Configuration

TIME-SELECT PINS		TIMEOUT MULTIPLIERS (μs/°K)			
TS1	TS0	MAX6575L	MAX6575H		
GND	GND	5	160		
GND	V _{DD}	20	320		
V _{DD}	GND	40	480		
V _{DD}	V_{DD}	80	640		

mum delay of 520ms, at which point it will again be in a ready state awaiting a start pulse.

Definition of Terms:

treset: Time I/O must be externally pulled low to guarantee the MAX6575L/H is in a ready state awaiting external trigger. (Part will assume a ready state after 520ms without a reset pulse.)

tSETUP: Time I/O must be high prior to a start pulse.

tstart: Trigger pulse which starts the on-chip timing sequence on its falling edge.

t_{Dx}: Timing delay between the falling edge of the start pulse and the falling edge initiated by CHIP#x.

 t_{Lx} : I/O pulse low time (5Tµs).

tready: Time after falling edge of start pulse when the MAX6575L/H will reset itself and await the next external trigger.

The temperature, in degrees Celsius, may be calculated as follows:

 $T(^{\circ}C) = [t_{Dx}(\mu s) / timeout multiplier(\mu s/^{\circ}K)] - 273.15^{\circ}K$



Figure 1. Timing Diagram

Table 2. Allowable Temperature Differential (°C)

TIMEOUT MULTIPLIER	MAX6575L				MAX6575H			
	5	20	40	80	160	320	480	640
5		>165	>165	>165	>165	>165	>165	>165
20			95.5	>165	>165	>165	>165	>165
40				132.0	>165	>165	>165	>165
80					153.5	>165	>165	>165
160						>165	>165	>165
320							70.2	>165
480								37.9
640								

Table 3. Typical Peak Noise Amplitude

PARAMETER	MAX6575L					MAX	6575H	
Timeout Multiplier	5	20	40	80	160	320	480	640
Noise Amplitude (°C)	±0.33	±0.15	±0.15	±0.098	±0.091	±0.063	±0.043	±0.037

Time-Select Pins (TS1, TS0)

Table 1 shows the configuration of the Time-select pins for the MAX6575L/H. Each device allows four selectable timeout multipliers intended to prevent overlapping when multiple devices are used on the same I/O line. Tie TS1 and TS0 to either GND or V_{DD} to select the desired temperature multiplier.

To monitor several chips on the same I/O line, different timeout multipliers should be selected using the TS1 and TS0 pins. The timeout periods are then scaled so that the response times will not overlap (see *Timeout Selection*).

Applications Information

Timeout Selection

Under extreme temperature conditions, it is possible for an overlap to occur between the timeout delays of different sensors in a multidrop configuration. This overlap can occur only if the temperature differential recorded between two devices is very large. Timeout overlaps can be avoided in multidrop configurations by selecting the appropriate timeout multipliers. Table 2 illustrates the allowable temperature differential between devices when the maximum error is present on each device. Allowable temperature differentials greater than 165°C indicate no overlap.

For example, if the maximum temperature differential in a system is 80°C, the only combinations of timeout multipliers that could result in timeout overlap would be a 320:480µs/°K (70.2°C) or a 480:640µs/°K (37.9°C) combination. As long as these combinations of timeout multipliers are not used in the same multidrop configuration, no overlap can occur. Thus, seven MAX6575L/H parts can be used in the same multidrop configuration if the maximum temperature differential between parts is 80°C. A similar analysis shows that four MAX6575L/H parts can be used when the maximum temperature differential extends over the entire 165°C range of the part.

Noise Considerations

The accuracy of the MAX6575L/H timeout delay is susceptible to noise generated both internally and externally. The effects of external noise can be minimized by placing a 0.1µF ceramic bypass capacitor close to the device's supply pin. Internal noise is inherent in the operation of the device and is detailed in Table 3. Internal averaging minimizes the effect of this noise when using longer timeout multipliers. The effects of this noise are included in the overall accuracy of the device as specified in the *Electrical Characteristics* table.



Figure 2. Interfacing Multiple Devices with a Microcontroller

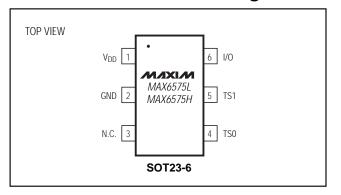
Interfacing Multiple Devices with a Microcontroller

Figure 2 shows how to interface multiple MAX6575L/H devices with an 8051 microcontroller. The first device, T1, is configured for a timeout multiplier of 40µs/°K, while the second device, T2, is configured for a timeout multiplier of 80µs/°K to avoid overlap. The microcontroller takes in temperature values from both sensors, T1 and T2, on a single port pin, P3.7. The microcontroller displays five times the temperature in degrees Celsius in binary on Port 1. A switch connected to a pull-up resistor at Port 3.5 selects which temperature is displayed: open = T1, closed = T2. Code is provided for this application as Listing 1.

Listing 1. 8051 Code Example

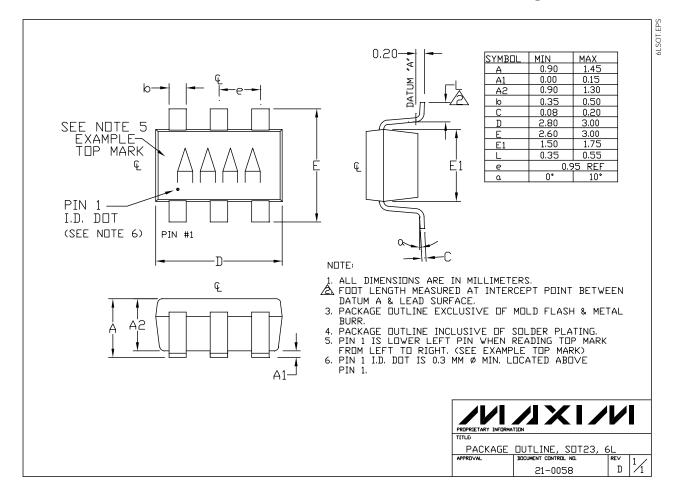
```
; Demonstration and test code for MAX6575 Temp to Delay
; Takes in temperature values from 2 sensors on single
; port pin, P3.7 and displays temp as 5 times C in binary on
; port 1. port 3.5 selects which temp displayed- H=1, L=2.
; example: room temp= 21 C, display 105 or 01101001 on P1
; EQUATES
TEMP1H
           EQU
                 10H
                                  ;TEMPERATURE 1
TEMP1L
           EQU
                 11H
                                  ;TEMPERATURE 2
TEMP2H
           EQU
                 12H
TEMP2L
           EQU
                 13H
           EQU
                 30H
D1
                                  ;delay scratch registers
D2
           EOU
                 31H
D3
           EQU
                 32H
;PINS
IOPIN
           BIT
                 P3.7
                                  ; single pin interface
SLCT
           BIT
                 P3.5
                                  ;select display 1/2= H/L
;MAIN
           ORG
                                  ;note one isr's used- timer overflow
           AJMP
                 BEGIN
                                  ;jump over isr's
           ORG
                 OBH
                                  ;timer 0 overflow- error
           CLR
                 TF0
                                  ;clear timer overflow
           POP
                 ACC
                                  ;unstack return address
           POP
                 ACC
                                  ;unstack return address
                LOW (DOTMP)
           PUSH
                                  ;return to top on error
           PUSH
                HIGH (DOTMP)
                                  ;return to top on error
           CLR
                 TRO
                                  ;clear timer run
           RETI
                                  :error
           org
                 30h
BEGIN:
           MOV
                 SP, #70h
                                  ;set sp at 70H
;setup timer0 to do timing
           MOV
                 TMOD, #01H
                                  ;t0 timer 16 bit
           MOV
                 IE,#82H
                                  ;enable tf0 irq- error
;inits done- measure 2 temps
DOTMP:
           MOV
                 TH0,#0
                                  ;zero counter
           MOV
                 TL0.#0
                                  ;zero counter
           SETB
                 TR0
                                  ;start timer
           CLR
                 IOPIN
                                  ;write pin low- start
           CALL DLYP1
                                  ;100 uS min low
           SETB IOPIN
                                  ;bring high
; do temp 1
           VOM
                 RO, #TEMP1H
                                  ;point at temp1- high byte
           CALL GTTP
                                  ;get temp1
;do temp 2
                                  ;point at temp2- high byte
           MOV
                 RO, #TEMP2H
           CALL GTTP
                                  ;get temp2
           CLR
                 TR0
                                  ;stop timer- acquistion done
```

Listing 1. 8051 Code Example (continued)


```
; 2 temps are stored- display bin value of selected on P1
; temps are 40T,80T- times are in us
                                 ;get temp1- low byte (40T)
           MOV
                RO, #TEMP1L
                R4,#3 ;shift right 3x for 5x temp, div 8
           VOM
           CALL TMTOC ; convert delay to degrees C \times 5
                P3.5,DSP2
                              ;if select low, display temp2
           MOV
                A,TEMP1L
                                ;get temperature
           CPL
                Α
                                 ;invert it for active low led's
           MOV
                P1,A
                                 ;display this temp
DSP2:
           MOV
                RO, #TEMP2L
                                 ;get temp2- low byte (80T)
                R4,#4
           MOV
                                 ; shift right 4x for 5x temp, div 16
                                 ;convert delay to degrees C x 5
           CALL
                TMTOC
           JВ
                P3.5,DSP1
                                ; if select high, display temp1 above
           MOV
                A, TEMP2L
                                get temperature;
                                 ;invert it for active low led's
           CPL
                А
           MOV
                P1,A
                                 ;display this temp
:done
; wait for 600 ms and do it again
          MOV D3,#60
DSP1:
DLL1:
          MOV
                D2,#100
DLL2:
          MOV
                D1,#50
                                 ;inner loop
          DJNZ D1, DLLLP
DLLLP:
                                 ;loop 100 us
          DJNZ D2,DLL2
                                 ;loop 10 ms
                                 ;loop 600ms
           DJNZ D3, DLL1
           JMP
                DOTMP
                                 ;loop forever
;GET TEMP- main, capture timer0 to @r0 after pin low edge
           JB
                IOPIN, GTTP
                             ;wait for low- irg gets hangs
           MOV
                A,THO
                                 get high- quick;
           MOV
                B,TL0
                                get low- quick;
           CJNE A, THO, ROLL
                                 ; check rollover msb
           ЛМР
                NOROL
                                 ;no
ROLL:
           MOV
                A,THO
                                 ;get high again
          MOV
                                 ;get low again
                B.TLO
NOROL:
           MOV
                @R0,A
                                 ;stash msb
                                ;point next
           INC
                R0
           MOV
                @RO.B
                                ;stash lsb
WAITH:
           JNB
                IOPIN, WAITH
                                ; wait for low- irg gets hangs
           RET
; sub; converts uS to degrees c x 5, R4 is # of right shifts
                                ;shift right
           CALL SHR0
           DJNZ R4, TMTOC
                                ;loop til shifted= 5x
           MOV
                A,@R0
                                ;get x5 lsb
           CLR
                                 ;ready for subb
           SUBB A, #055H
                                 ;low byte of 273 x 5- offset
           MOV
                @R0,A
                                 ;stash back
           DEC
                R0
                                 ;point hi
           MOV
                A,@RO
                                 ;get hi- prop carry
```

Listing 1. 8051 Code Example (continued)

```
SUBB A,#05H
                                     ;sub high of 273 x 5- offset
            MOV
                  @R0,A
                                     ;stash back- degrees c x 5 in temp
            RET
; shift right routine- "divide by 2" - point low on enter/exit
SHR0:
            DEC
                  R0
                                     ;point high
            MOV
                  A,@R0
                                     ;get high
                                     ;roll 0 into msbit
            CLR
                  С
            RRC
                                     ;shift right
            MOV
                  @R0,A
                                     ;stash back
                                     ;point low
            INC
                  R0
            MOV
                  A,@R0
                                     ;get low- prop carry
            RRC
                                     ;shift right
            MOV
                  @R0,A
                                     ;stash back
            RET
                                     ;pointing at 1sb on exit
;short delay- 100 uS
                                     ;~100 uS
            MOV
DLYP1:
                  D1,#50
D1LP:
            DJNZ
                 D1,D1LP
                                     ;delay- also entry
            RET
                                     ;return after .1 ms
            END
```


Pin Configuration

_Chip Information

TRANSISTOR COUNT: 302

Package Information

MAX6575L/H

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

NOTES

NOTES