

捷多邦,专业PCB打样工厂,24小时加急出货

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 September 1993

74HC/HCT132

FEATURES

- Output capability: standard
- I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT132 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT132 contain four 2-input NAND gates which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The gate switches at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the hysteresis voltage V_{H} .

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SVMDOL		CONDITIONS	ТҮР			
STWDUL	FARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	11	17	ns	
Cl	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	24	20	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 P_{D} = $C_{PD} \times V_{CC}{}^{2} \times f_{i} + \Sigma \; (C_{L} \times V_{CC}{}^{2} \times f_{o})$ where:

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT132

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 9, 12	1A to 4A	data inputs
2, 5, 10, 13	1B to 4B	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

Notes

1. H = HIGH voltage level L = LOW voltage level

nΥ

Н

Н

Н

L

APPLICATIONS

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

13

7293336

Fig.4 Functional diagram.

Logic diagram

(one Schmitt trigger).

Fig.5

74HC/HCT132

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard I_{CC} category: SSI

Transfer characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

						TEST CONDITIONS					
SAMBOI	PARAMETER				74H0			WAVEEODMS			
STWDUL		+25			-40 to +85		-40 to +125				WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.			
V _{T+}	positive-going threshold	0.7	1.18	1.5	0.7	1.5	0.7	1.5	V	2.0	Figs 6 and 7
		1.7	2.38	3.15	1.7	3.15	1.7	3.15		4.5	
		2.1	3.14	4.2	2.1	4.2	2.1	4.2		6.0	
V _{T-}	negative-going threshold	0.3	0.63	1.0	0.3	1.0	0.3	1.0	V	2.0	Figs 6 and 7
		0.9	1.67	2.2	0.9	2.2	0.9	2.2		4.5	
		1.2	2.26	3.0	1.2	3.0	1.2	3.0		6.0	
V _H	hysteresis ($V_{T+} - V_{T-}$)	0.2	0.55	1.0	0.2	1.0	0.2	1.0	V	2.0	Figs 6 and 7
		0.4	0.71	1.4	0.4	1.4	0.4	1.4		4.5	
		0.6	0.88	1.6	0.6	1.6	0.6	1.6		6.0	

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

					T _{amb} (TEST CONDITIONS				
SYMBOL					74H0			WAVEEODME			
STMBUL PARAMETER		+25			-40 TO +85		-40 TO +125		UNIT	V _{CC}	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay		36	125		155		190	ns	2.0	Fig.13
	nA, nB to nY		13	25		31		38		4.5	
			10	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.13
			7	15		19		22		4.5	
			6	13		16		19		6.0	

74HC/HCT132

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard I_{CC} category: SSI

Notes to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nB	0.3

Transfer characteristics for 74HCT

Voltages are referenced to GND (ground = 0 V)

						TEST CONDITIONS					
SAMBOL							WAVEEODME				
STMBUL	PARAMETER		+25		-40	to +85	-40 t	o +125			WAVEFORINS
		min.	typ.	max.	min.	max.	min.	max.			
V _{T+}	positive-going threshold	1.2	1.41	1.9	1.2	1.9	1.2	1.9	V	4.5	Figs 6 and 7
		1.4	1.59	2.1	1.4	2.1	1.4	2.1		5.5	
V _{T-}	negative-going threshold	0.5	0.85	1.2	0.5	1.2	0.5	1.2	V	4.5	Figs 6 and 7
		0.6	0.99	1.4	0.6	1.4	0.6	1.4		5.5	
V _H	hysteresis (V _{T+} – V _{T-})	0.4	0.56	-	0.4	-	0.4	-	V	4.5	Figs 6 and 7
		0.4	0.60	-	0.4	-	0.4	-		5.5	

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER				T _{amb} (°		TEST CONDITIONS				
SYMBOL					74HC						
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORINIS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY		20	33		41		50	ns	4.5	Fig.13
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.13

74HC/HCT132

74HC/HCT132

AC WAVEFORMS

74HC/HCT132

Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{ad} = f_i \times (t_r \times I_{CCa} + t_f \times I_{CCa}) \times V_{CC}.$

Where:

P_{ad}	 additional power dissipation (μW)
f _i	= input frequency (MHz)
t _r	= input rise time (ns); 10% – 90%
tr	= input fall time (ns): 10% – 90%

 I_{CCa} = average additional supply current (µA)

Average I_{CCa} differs with positive or negative input transitions, as shown in Figs 14 and 15.

HC/HCT132 used in a relaxation oscillator circuit, see Fig.16.

Note to Application information

All values given are typical unless otherwise specified.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".