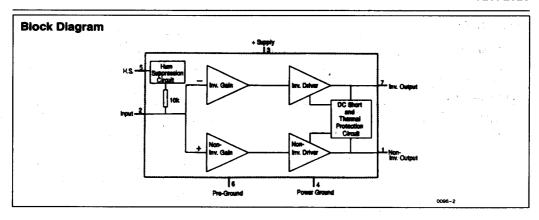

TDA 2025 50 Watt Power Amplifier

The TDA 2025 is a 20W to 50W watt power amplifier for Automotive and Entertainment applications featuring full protection from external thermal and electrical malfunctions.


The IC combines 2 complete power amplifiers configured as a class A-B bridge. The integrated resistor network in the positive and negative feedback loops set the gain for each amplifier to 30 dB. The inputs for the inverting and non-inverting gain (pre-amp) stages are tied in parallel resulting in a full bridge configuration with 36 dB of gain and superior "switch-on"/"switch-off" characteristics.

The output power drivers are designed to drive either 4Ω (V_S < 24V) or 8Ω (V_S < 45V) speakers at currents up to 4A.

An internal hum suppression circuit using an external capacitor is also available at pln 5 with 100 µF at 3V used as a typical value.

The output driver stages are short circuit protected to both ground and V_S, and an internal thermal "fuse" circuit protects the output stage against thermal damage.

An internal DC protection circuit prevents speaker overload if one output is shorted to ground,

Absolute Maximum Ratings*

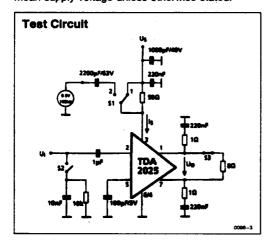
Supply Voltage (V _S)	0.3V to 45V
Output Current (I _{1,7})	4.0A to +4.0A
Input Voltage (Pin 5) (V ₅)	0.3V to 6.0V
Input Voltage (Pin 2) (V ₂)	0.3V to V _S
Junction Temperature (T _i)	+ 150°C
Storage Temperature (Tsto)	

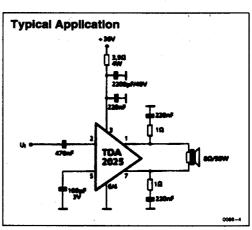
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Caution

Exceeding absolute maximum ratings may result in irreversible damage to the integrated circuit.

Recommended Operating Range


Parameter	Symbol Co	Conditions	Limits		Units
rai ailletei		Conditions	Min	Max	Office
Supply Voltage	Vs		8	42	. V
Case Temperature	T _c	P _V = 25W	-25	+ 75	•c
Thermal Resistance	RthSC			3	K/W


TDA 2025

Characteristics

Parameter	Symbol	Conditions	Limits			Units
r al allietoi	ameter Symbol Conditions		Min	Тур	Max	Onics
Quiescent Current	Is	S3 Open		40	60	mA
Differential Output	V _D			±0.5		٧
Input Impedance	Rj			10		kΩ
Output Power	Pq	$V_S = 14.4V;$ $R_L = 4\Omega; THD = 1\%$	12	15		w
	Pq	$V_S = 14.4V;$ $R_L = 4\Omega; THD = 10\%$	18	20		· W
	Pq	$V_S = 32V;$ $R_L = 8\Omega; THD = 1\%$	36	40		w
	Pq	$V_S = 32V;$ R _L = 8 Ω ; THD = 10%	45	50		w
Hum Suppression	a svr	S1 pos. 2, S2 closed	37	40		₫B
Supply Current	ls	P _q = 50W, f = 1 KHz		2.3		Α
Efficiency	n	P _q = 50W, f = 1 KHz		70		%
Total Harmonic Distortion	THD	P _q = 0.1W to 30W, f = 40 Hz to 15 KHz		0.2		%
Power Bandwidth	В	Pq = 30W, -3 dB at 1 KHz	20 Hz to 50 KHz			
Noise	Vn	DIN 45405, S2 Closed		5		μ٧
Voltage Gain	Av	$R_L = 8\Omega, P_q = 10W$	34	36	38	dB
Output Protection (Activation Level)	V ₁₍₇₎	Pin 1 or 7 shorted to GND and V _S > 10V		0.25	0.5	V

The Characteristics listed above are ensured over the operating range of the TDA 2025. Typical Characteristics specify mean values expected over the production spread. Typical characteristics apply to $T_a=25^{\circ}\text{C}$ at mean supply voltage unless otherwise stated.

Performance Characteristics

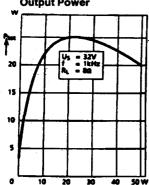
Test Conditions: Frequency = 1 KHz, Load Resistance = 4Ω

V _s (V)	I _s (A)	P _v (W)	Pq (W)	n (%)	THD (%)
8.06	0.453	2.64	3.65	28	0.10
8.02	0.801	3.24	6.42	50	0.59
8.02	0.835	3.23	6.69	52	0.99
8.01	0.940	3.19	7.53	58	5.01
8.00	0.997	3.20	7.98	60	10.02
14.46	1.448	10.43	20.93	50	0.12
14.44	1.630	10.12	23.53	57	0.59
14.43	1.677	10.10	24.20	58	0.99
14.42	1.830	9.81	26.38	63	5.00
14.40	1.942 ⁻	9.66	27.98	65	10.01
22.15	1.742	23.60	38.59	39	0.11
22.09	2.316	24.39	51.17	52	0.59
22.09	2.368	24.31	52.31	54	0.99
22.07	2.562	24.10	56.54	57	4.99
22.05	2.725	24.02	60.10	60	10.01

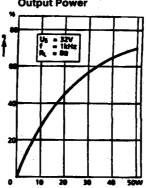
Note:

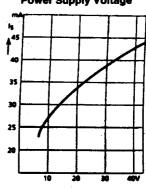
 $V_a = 24V$ Max. with $R_L = 4\Omega$.

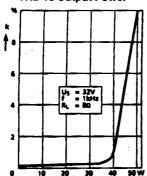
Test Conditions: Frequency = 1 KHz, Load Resistance = 8Ω

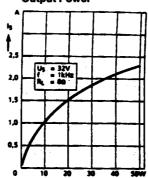

V _a (V)	I _a (A)	P _y (W)	P _q (W)	n (%)	THD (%)
28.06	1.512	19.93	42.43	53	0.05
28.03	1.735	18.66	42.64	62	0.12
28.02	1.880	17.33	52.68	67	0.99
28.00	2.016	16.21	56.44	71	5.00
27.99	2.135	15.33	59.76	74	10.01
32.15	1.613	26.87	51.86	48	0.04
32.12	1.888	25.62	60.63	58	0.10
32.09	2.140	23.08	68.66	66	0.99
32.07	2.281	21.75	73.15	70	5.00
32.06	2.423	20.56	77.67	74	10.00
36.15	1.787	34.57	64.62	46	0.05
36.12	2.033	33.47	73.45	54	0.10
36.09	2.357	29.90	85.06	65	0.99
36.07	2.510	28.20	90.53	69	4.99
36.06	2.667	26.70	96.18	72	9.99

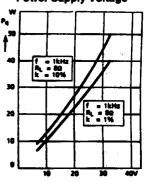
Note:


 $V_S=45V$ Max. with $R_L=8\Omega$.

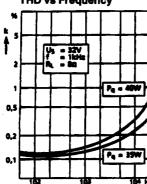

Power Dissipation vs Output Power


Efficiency vs Output Power

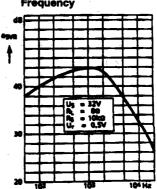

Quiescent Current vs Power Supply Voltage


THD vs Output Power

Supply Current vs Output Power



Output Power vs Power Supply Voitage



0096-7

THD vs Frequency

Hum Suppression vs Frequency

0096-

Ordering Information

Туре	Ordering Code	Package
TDA 2025	Q67000-A8186	TO220/7