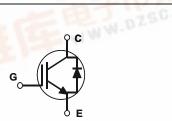


August 2005

FGA25N120ANTD 1200V NPT Trench IGBT

Features

- · NPT Trench Technology, Positive temperature coefficient
- Low saturation voltage: V_{CE(sat), typ} = 2.0V @ $I_C = 25A$ and $T_C = 25^{\circ}C$
- Low switching loss: E_{off, typ} = 0.96mJ
 0 I_C = 25A and T_C = 25°C
- Extremely enhanced avalanche capability


Description

Using Fairchild's proprietary trench design and advanced NPT technology, the 1200V NPT IGBT offers superior conduction and switching performances, high avalanche ruggedness and easy parallel operation.

This device is well suited for the resonant or soft switching application such as induction heating, microwave oven, etc.

Absolute Maximum Ratings

Symbol	Description		FGA25N120ANTD	Units
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	50	Α
	Collector Current	@ T _C = 100°C	25	А
I _{CM}	Pulsed Collector Current (Note 1)		75	А
l _F	Diode Continuous Forward Current @ T _C = 100°C		25	А
I _{FM}	Diode Maximum Forward Current		150	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	312	W
	Maximum Power Dissipation	@ T _C = 100°C	125	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case for IGBT		0.4	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case for Diode		2.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package Reel Size		Tape Width	Quantity	
FGA25N120ANTD	FGA25N120ANTD	TO-3P			30	

Electrical Characteristics of the IGBT $T_C = 25^{\circ}$ C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics					
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0V			3	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 250	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I_C = 25mA, V_{CE} = V_{GE}	3.5	5.5	7.5	V
V _{CE(sat)}	Collector to Emitter	I _C = 25A, V _{GE} = 15V		2.0	2.5	V
, ,	Saturation Voltage	I _C = 25A, V _{GE} = 15V, T _C = 125°C		2.15		V
		I _C = 50A, V _{GE} = 15V		2.65		V
Dynamic C	haracteristics	<u>'</u>	•	•	•	•
C _{ies}	Input Capacitance	V _{CE} = 30V, V _{GE} = 0V,		3700		pF
C _{oes}	Output Capacitance	f = 1MHz		130		pF
C _{res}	Reverse Transfer Capacitance			80		pF
	Characteristics			ı	T	T
t _{d(on)}	Turn-On Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 25\text{A},$ $R_{G} = 10\Omega, V_{GE} = 15\text{V},$		50		ns
t _r	Rise Time	Inductive Load, T _C = 25°C		60	90	ns
t _{d(off)}	Turn-Off Delay Time			190		ns
t _f	Fall Time			100	180	ns
E _{on}	Turn-On Switching Loss			4.1	6.2	mJ
E _{off}	Turn-Off Switching Loss			0.96	1.5	mJ
E _{ts}	Total Switching Loss			5.06	7.7	mJ
t _{d(on)}	Turn-On Delay Time	V _{CC} = 600 V, I _C = 25A,		50		ns
t _r	Rise Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$		60		ns
$t_{d(off)}$	Turn-Off Delay Time			200		ns
t _f	Fall Time			154		ns
E _{on}	Turn-On Switching Loss			4.3	6.9	mJ
E _{off}	Turn-Off Switching Loss			1.5	2.4	mJ
E _{ts}	Total Switching Loss			5.8	9.3	mJ
Q _g	Total Gate Charge	V _{CE} = 600 V, I _C = 25A,		200	300	nC
Q _{ge}	Gate-Emitter Charge	V _{GE} = 15V		15	23	nC
Q _{gc}	Gate-Collector Charge			100	150	nC

Notes

(1) Repetitive rating: Pulse width limited by max. junction temperature

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V_{FM}	Diode Forward Voltage	I _F = 25A	T _C = 25°C		2.0	3.0	V
			T _C = 125°C		2.1		
t _{rr}	Diode Reverse Recovery Time	I _F = 25A	T _C = 25°C		235	350	ns
		dI/dt = 200 A/μs	T _C = 125°C		300		
I _{rr}	Diode Peak Reverse Recovery Cur-		T _C = 25°C		27	40	Α
	rent		T _C = 125°C		31		
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C		3130	4700	nC
			T _C = 125°C		4650		

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

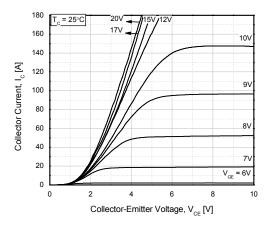


Figure 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

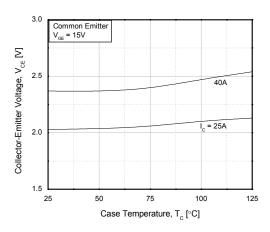


Figure 5. Saturation Voltage vs. V_{GE}

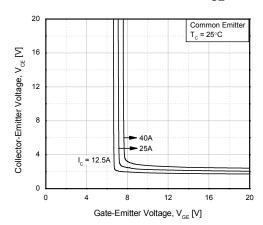


Figure 2. Typical Saturation Voltage Characteristics

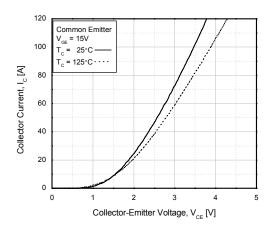


Figure 4. Saturation Voltage vs. V_{GE}

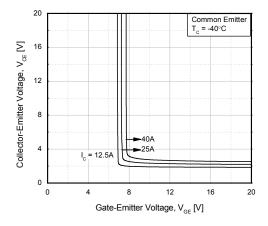
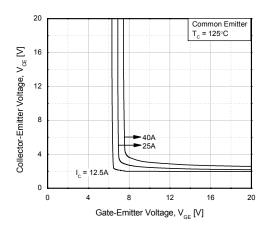



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

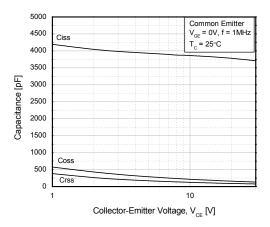


Figure 9. Turn-Off Characteristics vs. Gate Resistance

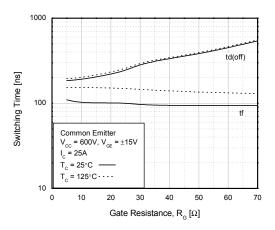


Figure 11. Turn-On Characteristics vs. Collector Current

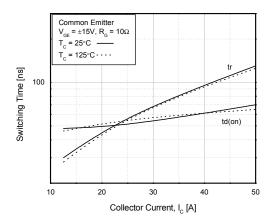


Figure 8. Turn-On Characteristics vs. Gate Resistance

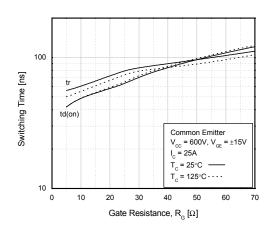


Figure 10. Switching Loss vs. Gate Resistance

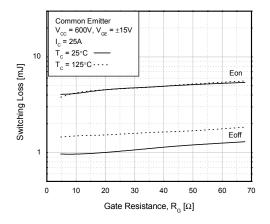
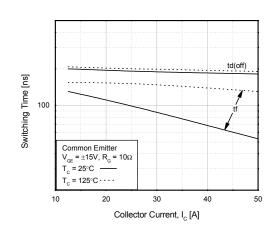
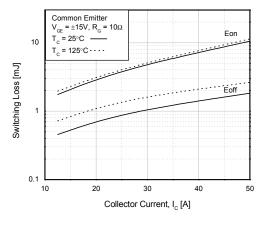




Figure 12. Turn-Off Characteristics vs.
Collector Current

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

Figure 14. Gate Charge Characteristics

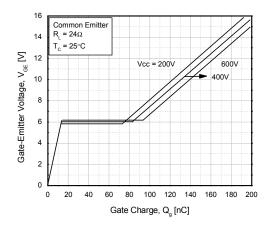


Figure 15. SOA Characteristics

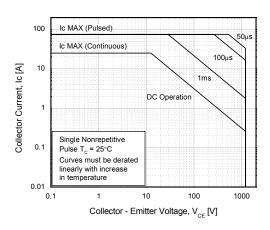


Figure 16. Turn-Off SOA

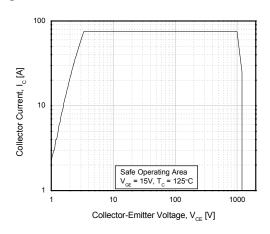
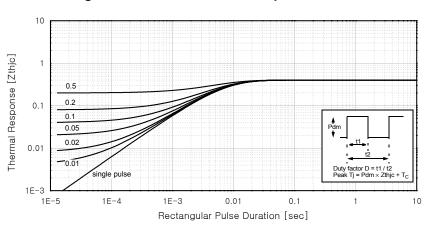
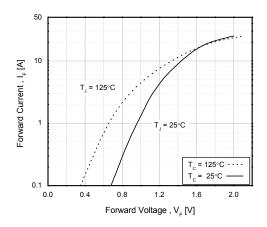
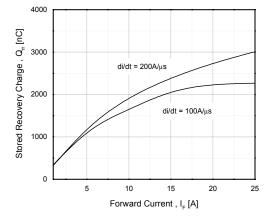



Figure 17. Transient Thermal Impedance of IGBT

Typical Performance Characteristics (Continued)

Figure 18. Forward Characteristics

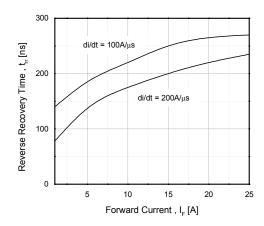
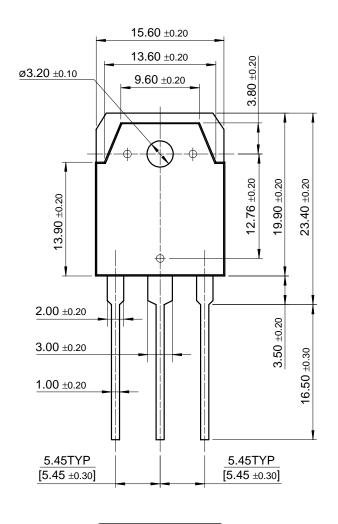
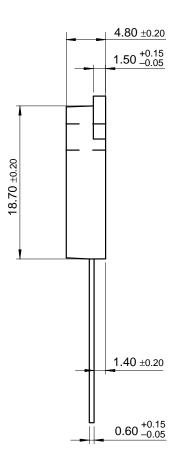

Figure 20. Stored Charge

Figure 19. Reverse Recovery Current




Figure 21. Reverse Recovery Time

Mechanical Dimensions

TO-3P

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST[®] ISOPLANAR™ PowerSaver™ SuperSOT™-8 PowerTrench® ActiveArray[™] FASTr™ LittleFET™ SyncFET™ QFET® TinyLogic[®] Bottomless™ FPS™ MICROCOUPLER™ QS™ Build it Now™ FRFET™ MicroFET™ TINYOPTO™ TruTranslation™ CoolFET™ GlobalOptoisolator™ MicroPak™ QT Optoelectronics™ CROSSVOLT™ GTO™ MICROWIRE™ Quiet Series™ UHC™ UltraFET® HiSeC™ RapidConfigure ™ DOME™ MSX^{TM} I²C™ RapidConnect™ **EcoSPARK™** MSXPro™ UniFET™ i-Lo™ E²CMOS™ μSerDes™ VCX^{TM} OCX^{TM} EnSigna™ ImpliedDisconnect™ SILENT SWITCHER® OCXPro™ Wire™

OPTOPLANAR™

SPM™

OPTOLOGIC® $\mathsf{FACT}^\mathsf{TM}$ IntelliMAX™ SMART START™

Stealth™ PACMAN™ Across the board. Around the world.™ POP™ SuperFET™ The Power Franchise® SuperSOT™-3 Power247™ Programmable Active Droop™ PowerEdge™ SuperSOT™-6

DISCLAIMER

FACT Quiet Series™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 116

