查询AD7228AUQ/883B供应商

捷多邦,专业PCB打样工厂,24小时 加急出货 Cotal 8-Bit D/A Converter

AD7228

1.1 Scope.

This specification covers the detail requirements for an octal CMOS digital-to-analog converter.

1.2 Part Number.

The complete part number per Table 1 of this specification is as follows:

Device	Part Number ¹
-1	AD7228T(X)/883B
-2	AD7228U(X)/883B

NOTE

¹To complete the part number substitute the package identifier as shown in paragraph 1.2.3.

1.2.3 Case Outline.

See Appendix 1 of General Specification ADI-M-1000: package outline:

(X) Package Description

Q	Q-24	24-Pin	Cerdip,	0.3"	Width
---	------	--------	---------	------	-------

E E-28A 28-Contact LCC

1.3 Absolute Maximum Ratings. $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

V _{DD} to GND0.3 V to +17 V
V_{DD} to V_{SS}
Digital Input Voltage $-0.3 \text{ V}, \text{V}_{\text{DD}}$
V_{REF} to GND
V_{OUT} to GND^1
Power Dissipation
Up to +75°C
Derates above +75°C 2.0 mW/°C
Operating Temperature Range
Thermal Resistance (θ_{IC}) :
Case 1 (Q-24)
Case 3 (E-28A) See MIL-M-38510, Appendix C
Storage Temperature
Lead Temperature (Soldering 10 sec)+300°C
Junction Temperature + 175°C

NOTE

¹Outputs may be shorted to any voltage in the range V_{SS} to V_{DD} provided that the power dissipation of the package is not exceeded. Typical short circuit for a short to V_{SS} is 50 mA.

8

AD7228 — SPECIFICATIONS

Table 1.

Test	Symbol	Device	Des Min	sign Max	Sub Group	Test Condition ¹	Units
Total Unadjusted Error ²	TUE	-1, 2	-2	+2	1	$V_{DD} = 15 V \pm 10\%,$	LSB
		-1	-2	+2	2, 3	$V_{\text{REF}} = +10 \text{ V}$	
		-2	-1	+1	2,3	(Single Supply Only)	
		-2	-1	+1	4	1	
Total Unadjusted Error	TUE	-1	-2	+2	13, 14, 15	Dual Supply Only	LSB
		-2	-1	+1	1		
Relative Accuracy	RA	-1, 2	-1	+1	1		LSB
		-1	-1	+1	2, 3	1	
		-2	-0.5	+0.5	2,3	1	
		-2	-0.5	+0.5	12	Ī	
Differential Nonlinearity	DNL	-1, 2	-1	+1	1, 2, 3	Guaranteed Monotonic (Single Supply Only)	LSB
Differential Nonlinearity	DNL	-1, 2	-1	+1	13, 14, 15	Dual Supply Only	LSB
Full-Scale Error ³	A _E	-1,2	-1	+1	1		mV
		-1	-1	+1	2, 3	1	
		-2	-0.5	+0.5	2,3		
		-2	-0.5	+0.5	12		
Zero Code Error	Azce	-1,2	-25	+25	1		mV
		-1	-30	+ 30	2, 3		
		-2	-20	+20	2, 3	•	
		-2	-15	+15	12		
Load Resistance	R _L	-1, 2	2		1, 2, 3	$V_{OUT} = \pm 10 V$ (Dual Supply & Single Supply)	kΩ
Reference Input Voltage Range	V _{REF}	-1, 2	2	10	1, 2, 3		v
Reference Input Resistance	R _{IN}	-1, 2	2		1, 2, 3	Dual Supply Only	kΩ
Reference Input Capacitance ⁴	C _{IN} (REF)	-1,2		500	13, 14, 15	Dual and Single Supply	pF
Digital Input High Voltage	V _{INH}	-1,2	2.4		1, 2, 3	Dual Supply Only	v
Digital Input Low Voltage	V _{INL}	-1, 2		0.8	1, 2, 3	Input Coding Is Binary	v
Digital Input Leakage Current	I _{ILC}	-1, 2	-1	+ 1	1, 2, 3	· · · · · · · · · · · · · · · · · · ·	μΑ
Digital Input Capacitance	C _{IN}	-1, 2		8	13, 14, 15		pF
Voltage Output Slew Rate	SR	-1,2	2		13, 14, 15	Dual and Single Supply	V/µs
Voltage Output Settling Time ⁵ Positive Full-Scale Change	t _{SL}	-1, 2		5	13, 14, 15	Dual and Single Supply	μs
Negative Full-Scale Change		-1, 2		5 7		Dual Supply Single Supply	
Power Supply Current	I _{DD}	-1, 2		16 22	1 2, 3	Dual Supply Only	mA
	I _{ss}	-1, 2		14 20	1 2, 3		
Function Tests ⁶		-1, 2			7		
Address to WR Setup Time	t ₁	-1,2	0		9, 10, 11	Dual and Single Supply	ns
Address to WR Hold Time	t ₂	-1,2	0		9, 10, 11	See Figure 2 and Note 7	
Data Valid to WR Setup Time	t ₃	-1,2	70		9		
-	,		100		10, 11		
Data Valid to WR Hold Time	t ₄	-1, 2	10		9, 10, 11		ns

8-86 DIGITAL-TO-ANALOG CONVERTERS

AD7228

Test	Symbol	Device	Design Min Max	Sub Group	Test Condition ¹	Units
Write Pulse Width	t5	-1, 2	95	9		ns
			150	10, 11		

NOTES

 $^{1}-55^{\circ}C < T_{A} < +125^{\circ}C$, Dual Supply unless otherwise specified. $R_{L} = 2k$, $C_{L} = 100 \text{ pF}$ unless otherwise stated. Parameters in subgroups 13, 14, 15 are characterized at initial design and after any subsequent redesigns.

² Includes zero code error, relative accuracy and full-scale error.

'Calculated after zero code error has been adjusted out.

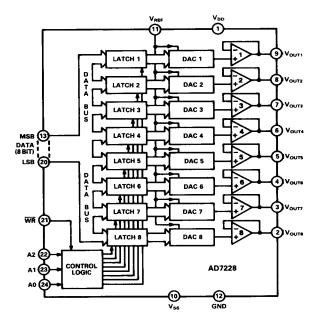
⁴Occurs when each DAC is loaded with all 1s.

 ${}^{5}V_{REF} = +10$ V; settling time to $\pm 1/2$ LSB.

⁶Subgroup 7 tests are for the purpose of verifying the truth table.

⁷All input rise and fall times measured from 10% to 90% of +5 V, $t_R = t_F = 5$ ns.

Timing measurement reference level is $\frac{V_{INH} + V_{INL}}{2}$


1.3.1 Recommended Operating Conditions.

NOTE

¹V_{OUT} must be less than V_{DD} by 3.5 V to ensure correct operation.

3.2.1 Functional Block Diagram and Terminal Assignments.

ma Pro 12

8

AD7228

Q Package (Cerdip)

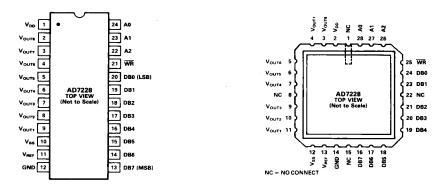


Table 2. Truth Table

WR	A2	A1	A0	Operation
Н	х	X	Х	No Operation Device Not Selected
L	L	L	L	DAC 1 Transparent
	L	L	L	DAC 1 Latched
L	L	L	н	DAC 2 Transparent
L	L	н	L	DAC 3 Transparent
L	L	н	н	DAC 4 Transparent
L	н	L	L	DAC 5 Transparent
L	н	L	н	DAC 6 Transparent
L	н	н	L	DAC 7 Transparent
L	н	Н	H	DAC 8 Transparent

AD7228 Control Inputs

H = High State L = Low State X = Don't Care

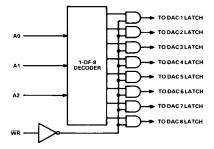
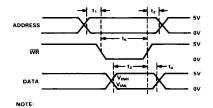
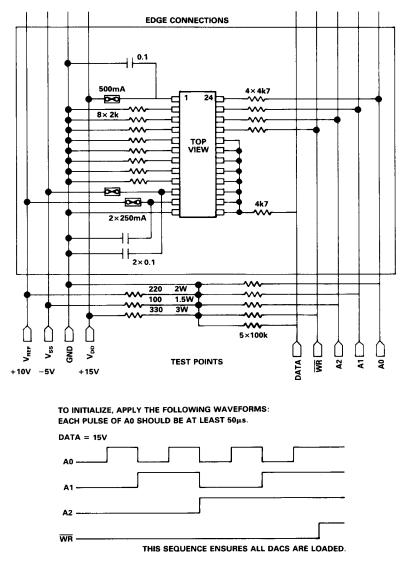



Figure 1. Input Control Logic

THE SELECTED INPUT LATCH IS TRANSPARENT WHILE WR IS LOW. THUS INVALID DATA DURING THIS TIME CAN CAUSE SPURIOUS OUTPUTS

m



3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (80).

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

Burn-In Conditions

8

