捷多邦,专业PCB打样工厂,24小时加急出货

CONSIDERATIONS TOWARDS THE DEVELOPMENT OF AN EPEIRIC SEA CARBON BOX MODEL. K. M. Panchuk and C. E. Holmden, University of Saskatchewan, Department of Geological Sciences, 114 Science Place, Saskatoon SK S7N 5E2.

Introduction: Certain features of the C isotope record of Paleozoic epicontinental limestones are not easily explained in the context of modern oceancentred C-cycling. These features include facies dependency in the distribution of epeiric sea limestone δ^{13} C, large magnitude δ^{13} C excursions unparalleled by any C isotope excursions recorded in younger deep ocean sediments, and offsets in the magnitude of correlated C isotope excursions. However, these features might be explained if epeiric sea C-cycling could, at times, be decoupled from ocean C-cycling to various but significant degrees. The degree to which epeiric sea C-cycling can overprint the δ^{13} C signature of contemporaneous ocean water that penetrates the epicontinental environment can be investigated quantitatively using a box model approach.

A box model of the epeiric sea C-cycle: Using C mass balance and isotope mass balance considerations, the evolution over time of the C isotope composition (δ_e) of the epeiric sea C reservoir (M_e) can be described as follows,

$$M_{e} \frac{d\delta_{e}}{dt} = F_{ae}(\delta_{s} - \delta_{e}) + F_{r}(\delta_{r} - \delta_{e}) + F_{w}(\delta_{w} - \delta_{e}) + F_{se}(\delta_{s} - \delta_{e}) - F_{be}{}^{o}\Delta$$

where fluxes of C are, respectively, atmosphere to epeiric sea (F_{ae}), recycled C (F_r), weathered C (F_w), input of ocean DIC (F_{se}) and burial of organic C (F_{be}°). Critical differences between the epeiric sea box model described above and the nature of ocean-centred Ccycling are the following:

Epeiric sea C reservoir. M_e is small compared to the C reservoir of the ocean. Consequently, small changes to the relative magnitude of C-fluxes contributing to the epeiric sea C-cycle can have a large effect on δ_e , while barely affecting the isotope balance of C in the oceans.

Ocean. The exchange of seawater between the ocean and the epeiric sea is the principle control over the degree to which C-cycling in epeiric seas can be decoupled from the ocean. We couple changes in the magnitude of this flux to changes in sea level.

Atmosphere. Because the ocean controls the δ^{13} C of CO₂ in the atmosphere through the oceanatmosphere CO₂ exchange flux, the atmosphere is an additional pathway by which the ocean C signature can be imparted to the epeiric sea. **Conclusions:** We will show with the aid of examples how adjustments in the relative magnitudes of these C-fluxes impact the isotope balance of C in an epeiric sea and can explain some of the peculiar features of the C isotope record of Paleozoic epeiric sea carbonates. We will also show that sea level change is an important driver of C isotope excursions in epeiric sea environments.

