

承認書

APPROVAL SHEET

品 名:LOW COST

CMOS OPTICAL MOUSE SENSOR

原相料號:PAN3101DB

客戶名稱:

客户料號:

承認日期	年	月日
承認 認意)	COM	
認		-"a7F

目 錄

Product Specification V1.03~25
Package Handling Information V1.026~ 31
Commitment and Declaration Letter32~32
Appendix: RoHS Report from SGS(1~4)

PAN3101DB LOW COST CMOS OPTICAL MOUSE SENSOR

Product Specification

General Description

The PAN3101 is a low cost CMOS process optical mouse sensor with DSP integration chip that serves as a non-mechanical motion estimation engine for implementing a computer mouse.

Features

- □Single 5.0 volt power supply
- □Precise optical motion estimation technology
- □Complete 2-D motion sensor
- □No mechanical parts
- □Accurate motion estimation over a wide range of surfaces
- □High speed motion detection up to 21 inches/sec
- □High resolution up to 800cpi
- □ Register setting for low power dissipation
- □Power saving mode during times of no movement
- □Serial Interface for programming and data transfer
- □I/O pin 5.0 volt tolerance

Key Specification

Power Supply	Wide operating supply range
1 owel Supply	4.25V~5.5V
Optical Lens	1:1
System Clock	18.432 MHz
Speed	21 inches/sec
Resolution	400/800срі
Frame Rate	3000 frames/sec
Operating	10mA @Mouse moving (Normal)
Current	5mA @Mouse not moving (Sleep) 100uA @Power down mode
Package	Staggered DIP8

Ordering Information

Order number	I/O	Resolution
PAN3101DB	CMOS output	800 cpi

1. Pin Description

Pin No.	Name	Туре	Definition
1	OSCIN	IN	Resonator input
2	OSCOUT	OUT	Resonator output
3	SDIO	I/O	Serial interface bi-direction data
4	SCLK	IN	Serial interface clock
5	LED	OUT	LED control
6	VSS	GND	Chip ground
7	VDD	PWR	Chip power, 5V power supply
8	VREF	BYPASS	Voltage reference

Pin Assign

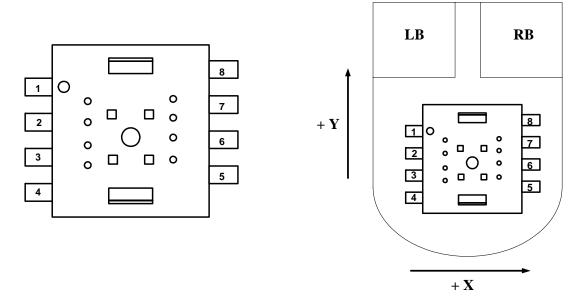


Figure 1. Top View Pinout

Figure 2. Top View of Mouse

ma Pen

pixart.com.tw

2. Block Diagram and Operation

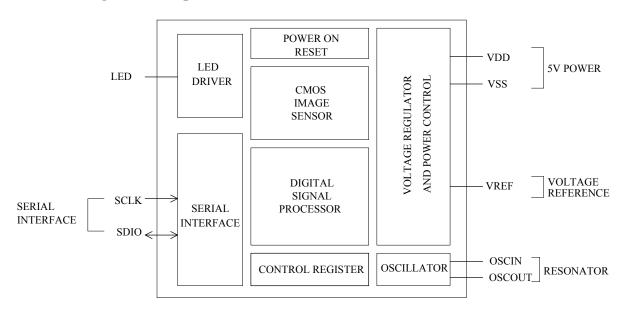


Figure 3. Block diagram

The PAN3101 is a low cost CMOS-process optical mouse sensor with DSP integration chip that serves as a non-mechanical motion estimation engine for implementing a computer mouse. It is based on new optical navigation technology, which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The sensor is in a 8pin optical package. The current X and Y information are available in registers accessed via a serial port.

<u>vpixart.com.tw</u>

3. Registers and Operation

The PAN3101 can be programmed through registers, via the serial port, and DSP configuration and motion data can be read from these registers. All registers not listed are reserved, and should never be written by firmware.

3.1 Registers

Address	Name	R/W	Reset Value	Data Type
0x00	Operation_Mode1	R/W	0x00	Bit field
0x01	Product_ID1	R	0x01	Bit field
0x02	Delta_Y	R	-	Eight bits 2's complement number
0x03	Delta_X	R	-	Eight bits 2's complement number
0x04	Image_Quality	R	-	Eight bits unsigned integer
0x05 0x13	-	-	-	Reserve for future use
0x14	Product_ID2	R	0x10	Eight bits [11:4] number with the product identifier
0x15	Product_ID2	R	0x1N	Four bits [3:0] number with the product identifier Reserved [3:0] number is reserved for future
0x16	Motion_Status	R	-	Bit field
0x17	Delta_X	R	-	Eight bits 2's complement number
0x18	Delta_Y	R	-	Eight bits 2's complement number
0x19	Image_Quality	R	-	Eight bits unsigned integer
0x1A	Operation_Mode2	R/W	-	Bit field
0x1B	Configuration	R/W	-	Bit field
0x1C 0x3F	-	-	-	Reserve for future use
0x40	Operation_Mode3	R/W	0x20	Bit field
0x41	Product_ID3	R	0x41	Bit field
0x42	Delta_Y	R	-	Eight bits 2's complement number
0x43	Delta_X	R	-	Eight bits 2's complement number
0x44	Image_Quality	R	-	Eight bits unsigned integer

and Plan

<u>vpixart.com.tw</u>

3.2 Register Descriptions

0x00		Operation_Mode1										
Bit	7	6	5	5 4 3 2 1 0								
Field	Reset	PD_enh			Reserve [5:1]			Slp_enl				
Usage	Register 0x00 default values,		_	e the operat	ion of the ser	nsor. Shown	below are the	bits, their				
	If Slp_enl=0, A on sleep mode		_	_		chip will ente	er sleep mode	, and keep				
Notes	Field Name	Descrip	otion									
	Reset		p reset rmal operation chip reset	on mode (E	Default)							
	PD_enh	0 = Noi	down mode mal operation		efault)							
	Reserved [5:1]	Reserve	Reserved for future									
	Slp_enl		node enable/d able (Default able									

0x01	Product_ID1												
Bit	7	6	5	4	3	2	1	0					
Field		PID [7:5]		Reserve [4:1] Opstate									
Usage	Product ID	Product ID of PAN3101 and operation state of the mouse.											
Notes	Field Name	ne Description											
	PID [7:5]	The pr	oduct ID is 0	00									
	Reserved [4	1:1] Reserv	ed for future										
	Opstate	0 = Sle	tion state eep state ormal state										

<u>pixart.com.tw</u>

LOW COST CMOS Optical Mouse Sensor

0x02	Delta_Y											
Bit	7	7 6 5 4 3 2 1 0										
Field	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0				
Usage			ince last repo e –128~+127		value is deter	mined by res	olution. Read	ling clears				

0x03	Delta_X											
Bit	7	7 6 5 4 3 2 1 0										
Field	X7	X6	X5	X4	Х3	X2	X1	X0				
Usage			ince last repo e –128~+127		value is deter	mined by res	olution. Reac	ding clears				

0x04	Image_Quality											
Bit	7	7 6 5 4 3 2 1 0										
Field		Imgqa[7:0]										
Usage	Image Qu	Image Quality is a quality level of the sensor in the current frame. Report range 0~255.										
Notes	Field Nar	nme Description										
	Imgqa[7:0] Image	quality repor	t range: 0(wo	rst) ~ 255(be	st).						

0x14	Product_ID2												
Bit	7	7 6 5 4 3 2 1 0											
Field				PID[11:4]								
Usage	The value in OK.	n this register	can't change	e. It can be us	sed to verify	that the serial	communicat	tions link is					

0x15		Product_ID2									
Bit	7	7 6 5 4 3 2 1 0									
Field		PID[3:0] Reserved [3:0]									
Usage	communica	The value in this register can't change. PID[3:0] can be used to verify that the serial communications link is OK. Reserved [3:0] is a value between 0x0 and 0xF, it can't be used to verify that the serial communications.									

LOW COST CMOS Optical Mouse Sensor

0x16				Motion	_Status						
Bit	7	6	5	4	3	2	1	0			
Field	Motion	Reserv	ed[6:5]	DYOVF	DXOVF	Reserved[2:1] RES					
Usage	so, then the	user should	read registers	0x17 and 0x	18 to get the	ed since the last accumulated me current resolution	otion. It al	so tells if			
	reading the	Reading this register freezes the Delta_X and Delta_Y register values. Read this register before eading the Delta_X and Delta_Y registers. If Delta_X and Delta_Y are not read before the motion egister is read a second time, the data in Delta_X and Delta_Y will be lost.									
Notes	Field Name	Descr	Description								
	Motion	0 = Nc	Motion since last report or PD 0 = No motion (Default) 1 = Motion occurred, data ready for reading in Delta_X and Delta_Y registers								
	Reserved[6	:5] Reserv	ved for future								
	DYOVF	0 = Nc	n Delta Y ove o overflow (I verflow has o	Default)	uffer has over	flowed since las	st report				
	DXOVF	0 = Nc	Motion Delta X overflow, ΔX buffer has overflowed since last report 0 = No overflow (Default) 1 = Overflow has occurred								
	Reserved [2	:1] Reserv	Reserved for future								
	RES		ution in count 0 (Default) 0	ts per inch							

<u>pixart.com.tw</u>

PixArt Imaging Inc.

PAN3101DB

LOW COST CMOS Optical Mouse Sensor

0x17	Delta_X									
Bit	7	6	5	4	3	2	1	0		
Field	X7	X6	X5	X4	Х3	X2	X1	X0		
Usage		X movement is counts since last report. Absolute value is determined by resolution. Reading clears the register. Report range –128~+127.								

0x18	Delta_Y									
Bit	7	6	5	4	3	2	1	0		
Field	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0		
Usage		Y movement is counts since last report. Absolute value is determined by resolution. Reading clears the register. Report range –128~+127.								

0x19	Image_Quality									
Bit	7	6 5 4 3 2 1 0								
Field		Imgqa[7:0]								
Usage	Image Qual	Image Quality is a quality level of the sensor in the current frame. Report range 0~255.								
Notes	Field Name	Field Name Description								
	Imgqa[7:0]	Imgqa[7:0] Image quality report range: 0(worst) ~ 255(best).								

LOW COST CMOS Optical Mouse Sensor

0x1A				Operat	tion_Mode2							
Bit	7	6	5	4	3	2	1	0				
Field	Reset	PD_enh	Reserv	ed[5:4]	LEDsht_enh	Slp_enh	Slpmu_enh	Wakeup				
Usage	Register 0x1A default values,			nge the ope	eration of the ser	nsor. Showi	n below are the	bits, their				
	"0xx"=Disable "110"=Force e	Operation_Mode2[2:0] "0xx"=Disable sleep mode "110"=Force enter sleep "101"=Force wakeup from sleep mode										
	until movin	After 1 sec not moving during normal mode, chip will enter sleep mode, and keep on sleep mode until moving is detected or wakeup is asserted.										
		2. Only one of these two bits Slpmu_enh and Wakeup can be set to 1 at the same time, others have to be set to 0. After a period of time, the bits, which was set to 1, will be reset to 0 by internal signal.										
Notes	Field Name	Descrip	Description									
	Reset		ip reset r mal opera l chip reset	tion mode	(Default)							
	PD_enh	0 = Noi	down mode r mal opera ver down m	tion mode	(Default)							
	Reserved[5:4]	Reserve	ed for future	e								
	Ledsht_enh	0 = Dis	utter enable able able (Defa u									
	Slp_enh	Sleep mode enable/disable 0 = Disable 1 = Enable (Default)										
	Slpmu_enh Manual enter sleep mode, set "1" will enter sleep and this bit will be reset to "0"											
	Wakeup	Manual reset to		om sleep m	node, set "1" wi	ll enter wak	eup and this bit	will be				

J

LOW COST CMOS Optical Mouse Sensor

0x1B				Config	uration						
Bit	7	6	5	4	3	2	1	0			
Field	RES		Reserved[6:0]								
Usage		figuration register allows the user to change the configuration of the sensor. Shown below its, their default values, and optional values.									
Notes	Field Name	e Descri	Description								
	RES	0 = 80	Output resolution setting $0 = 800 \text{ (Default)}$ $1 = 400$								
	Reserved[6	:0] Reserv	ed for future	;	Reserved for future						

0x40				Operatio	n_Mode3					
Bit	7	6	5	4	3	2	1	0		
Field	Reset	PD_enh	O_enh Ledsht_enh Reserve [4:1] Slp_enl							
Usage	Register 0x40 default values,			e the operat	tion of the ser	nsor. Shown	below are the	bits, their		
		Slp_enl=0, After 1 sec not moving during normal mode, the chip will enter sleep mode, and keep sleep mode until moving is detected or wakeup is asserted.								
Notes	Field Name	Descrip	Description							
	Reset	0 = Noi	Full chip reset 0 = Normal operation mode (Default) 1 = Full chip reset							
	PD_enh	0 = Noi	down mode rmal operation wer down mod		Default)					
	Ledsht_enh	0 = Dis	utter enable / able able (Default							
	Reserved [4:1]	Reserve	Reserved for future							
	Slp_enl	_	node enable/d able (Default able							

PSV1.0/PHIV1.0 20060516

J

LOW COST CMOS Optical Mouse Sensor

0x41				Produ	ct_ID3			
Bit	7	7 6 5			3	2	1	0
Field	PID [7:5]				Reserv	re [4:1]		Opstate
Usage	Product ID	of PAN3101	and operatio	n state of the	mouse.			
Notes	Field Name	e Descri	iption					
	PID [7:5]	PID [7:5] The product ID is						
	Reserved [4	1:1] Reserv	ed for future	;				
	Opstate	0 = Slo	tion state eep state ormal state					

0x42	Delta_Y									
Bit	7	6	5	4	3	2	1	0		
Field	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0		
Usage		Y movement is counts since last report. Absolute value is determined by resolution. Reading clears the register. Report range –128~+127.								

0x43	Delta_X									
Bit	7	6	5	4	3	2	1	0		
Field	X7	X6	X5	X4	Х3	X2	X1	X0		
Usage		X movement is counts since last report. Absolute value is determined by resolution. Reading clears the register. Report range –128~+127.								

0x44	Image_Quality									
Bit	7	7 6 5 4 3 2 1 0								
Field		Imgqa[7:0]								
Usage	Image Qua	Image Quality is a quality level of the sensor in the current frame. Report range 0~255.								
Notes	Field Nan	ne Descri	Description							
	Imgqa[7:0] Image	Image quality report range: 0(worst) ~ 255(best).							

LOW COST CMOS Optical Mouse Sensor

4. Specifications

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T_{STG}	Storage temperature	-40	85	$^{\circ}\!\mathbb{C}$	
TA	Operating Temperature	-15	55	°C	
	Lead Solder Temp		260	°C	For 10 seconds, 1.6mm below seating plane.
$V_{ m DD}$	DC supply voltage	-0.5	5.5	V	
ESD			2	kV	All pins, human body model MIL 883 Method 3015
V _{IN}	DC input voltage	-0.5	5.5	V	SDIO, SCLK, VDD

Recommend Operating Condition

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
T_{A}	Operating Temperature	0		40	°C	
$V_{ m DD}$	Power supply voltage	4.25	5.0	5.5	V	
V_N	Supply noise			100	mV	Peak to peak within 0-100 MHz
F_{CLK}	Clock Frequency		18.432	24.576	MHz	Set by ceramic resonator
FR	Frame Rate		3000	4000	Frames/s	4000Frames/s @ F _{CLK} =24.567MHz
SCLK	Serial Port Clock Frequency			10	MHz	
Z	Distance from lens reference plane to surface	2.3	2.4	2.5	mm	Refer to Figure 5.
S	Speed	0	21	28	Inches/sec	28inches/sec @ F _{CLK} =24.567MHz
A	Acceleration	0.1		20	g	
R	Resolution			800	cpi	

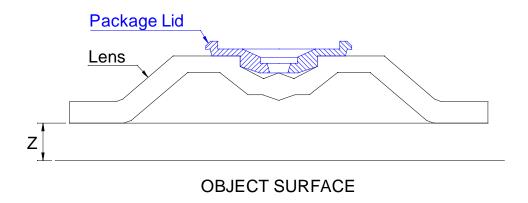


Figure 4. Distance from Lens Reference Plane to Surface

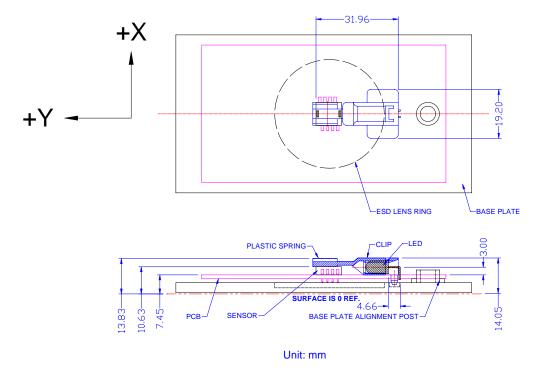


Figure 5. PCB assembly

LOW COST CMOS Optical Mouse Sensor

AC Operating Condition

Electrical Characteristics over recommended operating conditions. Typical values at 25 °C, V_{DD} =5.0 V, F_{CLK} =18.432MHz

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
$t_{ m HOLD}$	SDIO read hold time		3		us	Minimum hold time for valid data. (Refer to Figure 8)
t _{RESYNC}	Serial Interface RESYNC.	1			us	@3000frame/sec (Refer to Figure 9)
t _{SIWTT}	Serial Interface Watchdog Timer Timeout	1.7			ms	@3000frame/sec (Refer to Figure 9)
$t_{ m PDR}$	PD Pulse Register			333	us	One frame time maximum after setting bit 6 in the Operation_Mode register @3000frame/sec. (Refer to Figure 10)
t _{PUPD}	Power Up from deactivate the Power Down mode	3		30.5	ms	From deactivate power down mode to valid quad signals. After t _{PUPD} , all registers contain valid data from first image after deactivate power down mode. Note that an additional 90 frames for Auto-Exposure (AE) stabilization may be required if mouse movement occurred while PD was high.
$t_{ m PU}$	Power Up from V _{DD}	3		30.5	ms	From V_{DD} to valid quad signals. 500usec + 90frames.
t_r, t_f	Rise and Fall Times: SDIO		25, 20		ns	$C_L = 30 pf$
t_r, t_f	Rise and Fall Times: ILED		10, 10		ns	LED bin grade: R; R1=100ohm

and Plan

LOW COST CMOS Optical Mouse Sensor

DC Electrical Characteristics

Electrical Characteristics over recommended operating conditions. Typical values at 25 °C, V_{DD} =5.0 V, F_{CLK} =18.432MHz

Symbol	Parameter	Min.	Typ.	Max.	Unit	
Type:	PWR					
I_{DD}	Supply Current Mouse moving (Normal)		10		mA	SCLK, SDIO = no load
I_{DD}	Supply Current Mouse not moving (sleep1)		5		mA	
I_{DDPD}	Supply Current (Power Down)		100		uA	SCLK, SDIO = high
Type: S	CLK, SDIO					
V _{IH}	Input voltage HIGH	2.0				
V_{IL}	Input voltage LOW			0.7	V	
V_{OH}	Output voltage HIGH	2.4			V	@I OH = 2mA (SDIO only)
V _{OL}	Output voltage LOW			0.6	V	@I _{OL} = 2mA (SDIO only)
Type: O	OSCIN					
V _{IH}	Input voltage HIGH	2.0			V	When driving from an external source
V _{IL}	Input voltage LOW			0.7	V	When driving from an external source
Type: L	ED					
V _{OL}	Output voltage LOW			150	mV	$@I_{OL} = 25mA$

as Pen as

5. Serial Interface

The synchronous serial port is used to set and read parameters in the PAN3101, and can be used to read out the motion information instead of the quadrature data pins.

SCLK: The serial clock line. It is always generated by the host micro-controller.

SDIO: The serial data line used for write and read data.

5.1 Transmission Protocol

The transmission protocol is a two-wire link, half duplex protocol between the micro-controller and PAN3101. All data changes on SDIO are initiated by the falling edge on SCLK. The host micro-controller always initiates communication; the PAN3101 never initiates data transfers.

The transmission protocol consists of the two operation modes:

- Write Operation.
- Read Operation.

Both of the two operation modes consist of two bytes. The first byte contains the address (seven bits) and has a bit7 as its MSB to indicate data direction. The second byte contains the data.

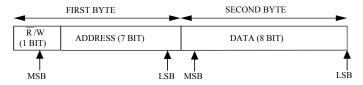


Figure 6. Transmission protocol

5.1.1 Write Operation

A write operation, which means that data is going from the micro-controller to the PAN3101, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The transfer is synchronized by SCLK. The micro-controller changes SDIO on falling edges of SCLK. The PAN3101 reads SDIO on rising edges of SCLK.

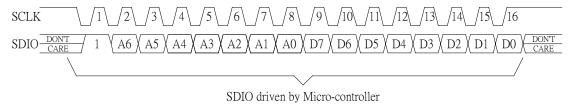
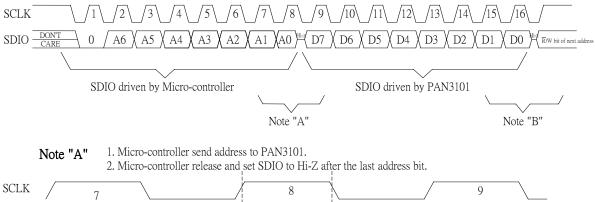
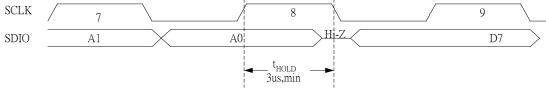


Figure 7. Write operation


5.1.2 Read Operation


A read operation, which means that data is going from the PAN3101 to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is written by the micro-controller, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by the PAN3101. The transfer is synchronized by SCLK. SDIO is changed on falling edges of SCLK and read on every rising edge of SCLK. The micro-controller must go to a high Z state after the last address data bit. The PAN3101 will go to the high Z state after the last data bit.

I

ma Pen

vpixart.com.tw

Note "B"

1. PAN3101 send data to Micro-controller.

2. PAN3101 release and set SDIO to Hi-Z after the last data bit.



Figure 8. Read operation

5.2 Re-Synchronous Serial Interface

5.2.1 Power On Problem

The problem occurs if the PAN3101 powers up before the microprocessor sets the SCLK and SDIO lines to be output.

5.2.2 ESD Events

The PAN3101 and the micro-controller might get out of synchronization due to ESD events.

If the PAN3101 and the micro-controller might get out of synchronization due to power on problem or ESD events. An easy way to solve this is to waiting for watchdog timer timeout

5.3 Collision Detection on SDIO

The only time that the PAN3101 drives the SDIO line is during a READ operation. To avoid data collisions, the micro-controller should release SDIO before the falling edge of SCLK after the last address bit. The PAN3101 begins to drive SDIO after the next falling edge of SCLK. The PAN3101 release SDIO of the rising SCLK edge after the last data bit. The micro-controller can begin driving SDIO any time after that. In order to maintain low power consumption in normal operation, the micro-controller should not leave SDIO floating until the next transmission (although that will not cause any communication difficulties).

5.4 Serial Interface Watchdog Timer Timeout

When there are only two pins to read register from PAN3101, and PD pin can't be used to re-synchronous function. If the microprocessor and the PAN3101 get out of sync, then the data either written or read from the registers will be incorrect. In such a case, an easy way to solve this condition is to toggle the SCLK

19

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

ma Pen Car

line from high to low to high and wait at least t_{SIWTT} to re-sync the parts after an incorrect read. The PAN3101 will reset the serial port but will not reset the registers and be prepared for the beginning of a new transmission.

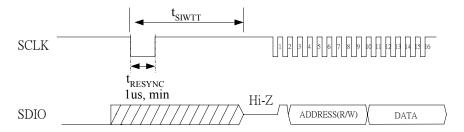


Figure 9. Re-synchronous serial interface using watchdog timer timeout

5.5 Power Down Mode

PAN3101 can be placed in a power-down mode by setting bit 6 in the Operation_Mode register via a serial port write operation. After setting the configuration register, wait at least 1 frame times. To get the chip out of the power-down mode, clear bit 6 in the configuration register via a serial port write operation. In power-down mode, the serial interface watchdog timer is not available. But, The serial interface still can read/write normally. For an accurate report after leave power down mode, wait about 3ms before the micro-controller is able to issue any write/read operation to the PAN3101.

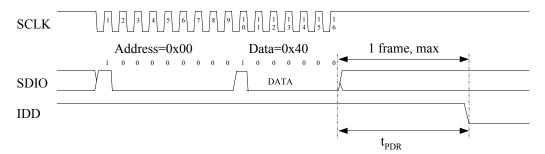


Figure 10. Power-down configuration register writing operation

5.6 Error Detection

- 1. The micro-controller can verify success of write operations by issuing a read command to the same address and comparing written data to read data.
- 2. The micro-controller can verify the synchronization of the serial port by periodically reading the product ID register.

20

6. Referencing Application Circuit

6.1 Recommended Typical Application using External LED Control

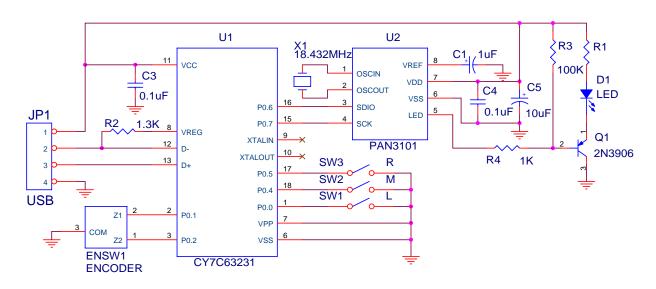


Figure 11. Application circuit using external LED

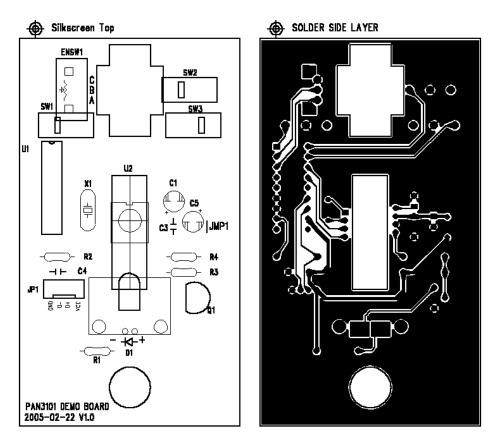


Figure 12. Example printed circuit board layout

21

6.2 Recommended Typical Application using Internal LED Control

Figure 13. Application circuit using internal LED

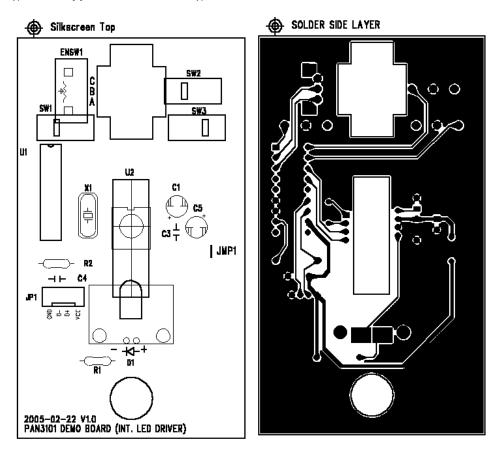


Figure 14. Example printed circuit board layout

LOW COST CMOS Optical Mouse Sensor

6.3 PCB Layout Consideration

- 1. Caps for pins 7, 8 must have trace lengths less than **5mm**.
- 2. The trace lengths of OSCOUT, OSCIN must less than 6mm.

6.4 Recommended Value for R1

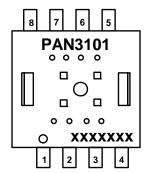
Radiometric intensity of LED Bin limits (mW/Sr at 20mA)

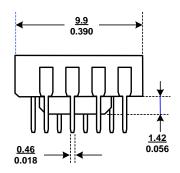
LED Bin grade	Min.	Тур.	Max.
N	14.7		17.7
P	17.7		21.2
Q	21.2		25.4

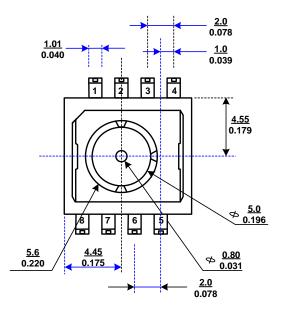
Note: Tolerance for each bin will be $\pm 15\%$

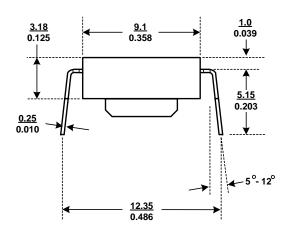
R1 value (ohm) for external LED control, VDD=5.0V

LED bin grade	Min.	Тур.	Max.
N	27	47	
P	27	47	
Q	27	47	


R1 value (ohm) for internal LED control, VDD=5.0V


LED bin grade	Min.	Тур.	Max.
N	47	100	
P	47	100	
Q	47	100	

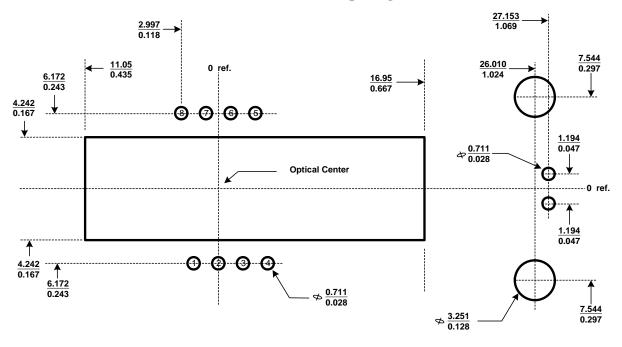

rt.com.tw


7. Package Information

7.1 Package Outline Drawing

NOTES:

- 1. All dimensions in MM/INCH.
- 2. All dimensions tolerance: +/- 0.10mm
- 3. Maxmumflash: +0.2mm
- 4. Angular tolerance: +/- 3.0degress


Figure 15. Package outline drawing

rt.com.tw

J

ma Pan Car

7.2 Recommended PCB Mechanical Cutouts and Spacing

All Dimensions: mm / inch

Figure 16. Recommended PCB mechanical cutouts and spacing

8. Update History

Version	Update	Date
V0.1	Creation, Preliminary 1 st version	03/01/2005
V0.2	3.1 Registers	03/02/2005
V1.0	6.4 Recommended Value for R1	03/31/2005

rt.com.tw

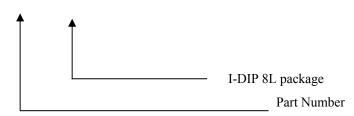
J

Package Handling Information

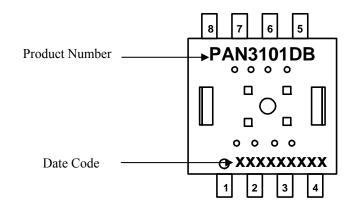
PAN3101DB

1. Product Ordering Information	Page27
2. Marking Information	Page 27
3. Material List	Page 28
4. Package Outline Dimension	Page 29
5. Packing Information	Page 30
6. Solder Operation	Page 30
7. Handling precaution for the prevention of ESD	Page 31

Issue By: Charge Chang


Date : 4/28/2005

Revision: 1.0


PixArt Imaging Inc. rt.com.tw

1. Product Ordering Information

Product Number: PAN3101 DB

2. Marking Information

rt.com.tw

3. Material List

1. Leadframe Material: Copper

2. Die Attach : Silver Epoxy

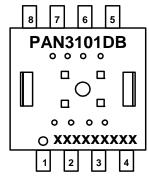
Ablebond Epoxy (967-1) or

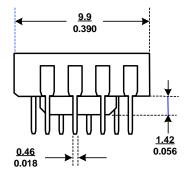
Equivalent Material

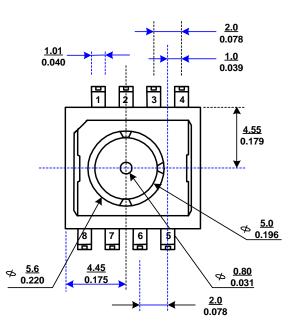
3. Wire Bonding : Gold Wire

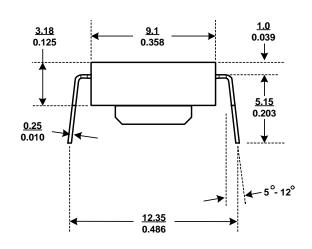
1.0 or 1.2 Mil (99.99% Au)

4. Mold Compound : LCP or Equivalent Material

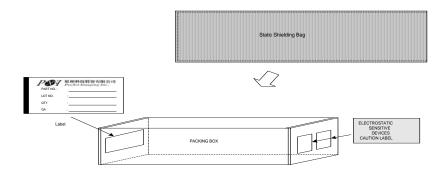

5. Marking : Laser mark


6. Lead Finish : Ni-Au or Ni-Pd-Au Plating


ma Pan Car


4. Package Outline Dimension

iDIP Package Outline Dimension



NOTES:

- 1. All dimensions in MM/INCH.
- 2. All dimensions tolerance: +/- 0.10mm
- 3. Maxmumflash: +0.2mm
- 4. Angular tolerance: +/- 3.0degress

5. Packing Information

Packing Type: Tube method

Note: 1. When the units is out of packing, should be operation at:

Temperature = $\sqrt{30}^{\circ}$ C, Humidity = $\sqrt{90}$ % RH

6. Solder Operation

iDIP package cannot be guaranteed when subjected to SMT solder reflow processing because this type of soldering is known to cause damages in the package. In order to prevent the solder iron and the solder from heating the package surface, using a 30W solder iron (Tip Temperature: 300° C) and performing soldering for each terminal within 2 sec. Is recommended. And else the wave solder (Solder Temperature < 260 ° C @10 sec) can be used for production.

rt.com.tw

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

7. Handling precaution for the prevention of ESD

Explained below are procedures that must be taken in fabrication to prevent the electrostatic destruction of semiconductor devices.

The following basic rules must be obeyed.

- 1. Equalize potentials of terminals when transporting or storing.
- 2. Equalize the potentials of the electric device, work table, and operator's body that may come in contact with the IC's.
- 3. Prepare an environment that does not generate static electricity.

One method is keeping relative humidity in the work room to about 50%.

Equipment and tools

- Any electrical equipments and tools located on the work table surface must be
 isolated from The work table surface, and ground the equipments and tools that are
 to be used.
- 2. Work table surface must be use conductive material or conductive mat.

(Should be ground through a $1M\Omega$ resistor)

Transporting, storing and packing

1. Use conductive IC's tube or tray, and conductive or shielding bag to store IC's.

Soldering operation

- 1. Use a soldering iron with a grounding wire.
- 2. When perform manual soldering operation, the operator should wear wrist straps.
- Do not use the desoldering pump when removing the IC's from the PCB board. Use a solder-wick or equivalent.

rt.com.tw

Commitment and Declaration Letter

Our company PixArt hereby commitment and declaration that the product PAN3101DB delivered to are qualified as "Lead-free" product and are conform to the following requirements:

- 1. "Lead Free" parts, materials and specified products are compliant with all requirement set by the European RoHS, including additional ban (cadmium, mercury, Lead, hexavalent chromium, PBB & PBDE flame retardant) already mentioned as below:
 - 1-1 Cadmium (Cd) and its Compounds: < 100 ppm
 - 1-2 Mercury (Hg) and its Compounds : < 1000 ppm
 - 1-3 Lead (Pb) and its Compounds : < 1000 ppm
 - 1-4 Hexavalent-Chromium (Cr6+) Compounds: < 1000 ppm

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

rt.com.tw

- 1-5 Polybrominated Biphenyls (PBB) : < 1000 ppm
- 1-6 Polybrominated Biphenyls Ethers/Oxides (PBDE,PBBE): < 1000 ppm
- 2. "Lead Free" compliant parts are also qualified for specified temperature increase as "Package Handling Information".
- 3. The test results of other hazardous substances are tested by SGS, please see the attached file.

as Pen as

PSV1.0/PHIV1.0 20060516

32

J

PIXART IMAGING INC.

5F, NO. 5, INNOVATION ROAD I, SCIENCE-BASED

INDUSTRIAL PARK HSIN-CHU, TAIWAN, R. O. C.

Report No. : CE/2006/51428

Date : 2006/05/12

Page : 1 of 4

The following merchandise was (were) submitted and identified by the client as:

Type of Product : LOW COST CMOS OPTICAL MOUSE SENSOR

Style/Item No : PAN3101DB

<u>Buyer/Order No</u>: PIXART IMAGING INC.

Sample Received : 2006/5/5

<u>Testing Date</u> : 2006/5/5 TO 2006/05/12

<u>Test Result</u>: - Please see the next page -

Daniel Yeh, M.R. Operation Manage Signed for and on behalf of SGS TAIWAN LTD.

Report No. : CE/2006/51428 PIXART IMAGING INC.

5F, NO. 5, INNOVATION ROAD I, SCIENCE-BASED : 2006/05/12 Date

INDUSTRIAL PARK HSIN-CHU, TAIWAN, R. O. C. Page : 2 of 4

Test Result

PART NAME NO.1 DK.GRAY PLASTIC

PART NAME NO.2 GOLDEN COLORED METAL PIN

Mand Mann (a)	TT \$4	Wath a d	MDI	Re	sult
Test Item (s):	Unit	Method	MDL	No.1	No.2
Monobromobiphenyl	%		0.0005	N.D.	N.D.
Dibromobiphenyl	%		0.0005	N.D.	N.D.
Tribromobiphenyl	%		0.0005	N.D.	N.D.
Tetrabromobiphenyl	%	With reference to	0.0005	N.D.	N.D.
Pentabromobiphenyl	%	USEPA3540C or	0.0005	N.D.	N.D.
Hexabromobiphenyl	%	USEPA3550C. Analysis was performed by HPLC/DAD,	0.0005	N.D.	N.D.
Heptabromobiphenyl	%	LC/MS or GC/MS.	0.0005	N.D.	N.D.
Octabromobiphenyl	%	(prohibited by 2002/95/EC	0.0005	N.D.	N.D.
Nonabromobiphenyl	%	(RoHS), 83/264/EEC, and	0.0005	N.D.	N.D.
Decabromobiphenyl	%	76/769/EEC)	0.0005	N.D.	N.D.
Total PBBs	%		-	N.D.	N.D.
(Polybrominated biphenyls)/Sum of above					
Monobromobiphenyl ether	%		0.0005	N.D.	N.D.
Dibromobiphenyl ether	%		0.0005	N.D.	N.D.
Tribromobiphenyl ether	%		0.0005	N.D.	N.D.
Tetrabromobiphenyl ether	%		0.0005	N.D.	N.D.
Pentabromobiphenyl ether	%	With reference to	0.0005	N.D.	N.D.
Hexabromobiphenyl ether	%	USEPA3540C or	0.0005	N.D.	N.D.
Heptabromobiphenyl ether	%	USEPA3550C. Analysis was	0.0005	N.D.	N.D.
Octabromobiphenyl ether	%	performed by HPLC/DAD, LC/MS or GC/MS.	0.0005	N.D.	N.D.
Nonabromobiphenyl ether	%	(prohibited by 2002/95/EC	0.0005	N.D.	N.D.
Decabromobiphenyl ether	%	(RoHS), 83/264/EEC, and	0.0005	N.D.	N.D.
Total PBBEs(PBDEs) (Polybrominated biphenyl ethers)/Sum of above	%	76/769/EEC)	-	N.D.	N.D.
Total of Mono to Nona- brominated biphenyl ether. (Note 4)	%		-	N.D.	N.D.

Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 對本報告內容或外觀之任何未經授權之變更、僞造、寫改皆屬非法,違犯者將會被依法追訴。

PIXART IMAGING INC.

5F, NO. 5, INNOVATION ROAD I, SCIENCE-BASED

INDUSTRIAL PARK HSIN-CHU, TAIWAN, R. O. C.

Report No. : CE/2006/51428

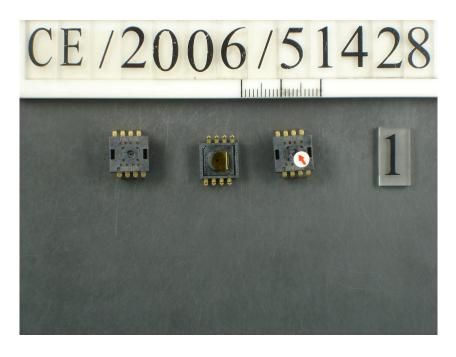
Date : 2006/05/12

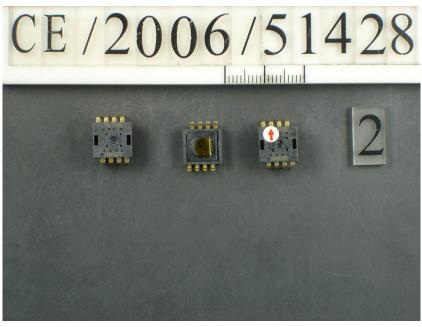
Page : 3 of 4

The set The sec (s):	Unit	Method	MDL	Res	sult
Test Item (s):	Unit	Method	MDL	No.1	No.2
Chromium VI (Cr+6)	ppm	UV-VIS(US EPA 7196A) after reference to US EPA 3060A.	2	N.D.	N.D.
Cadmium (Cd)	ppm	ICP-AES after reference to EN 1122, method B:2001 or other acid digestion.	2	N.D.	N.D.
Mercury (Hg)	ppm	ICP-AES after reference to US EPA 3052 or other acid digestion.	2	N.D.	N.D.
Lead (Pb)	ppm	ICP-AES after reference to US EPA 3050B or other acid digestion.	2	N.D.	10.9

NOTE: (1) N.D. = Not detected (<MDL)

- (2) ppm = mg/kg
- (3) MDL = Method Detection Limit
- (4) Decabromobiphenyl ether (DecaBDE) in polymeric applications is exempted by Commission Decision of 13 Oct 2005 amending Directive 2002/95/EC notified under document 2005/717/EC.
- (5) PBBEs=PBDEs=Polybrominated Diphenyl Ethers=PBDOs=PBBOs.
- (6) " " = Not Regulation


PIXART IMAGING INC.


5F, NO. 5, INNOVATION ROAD I, SCIENCE-BASED INDUSTRIAL PARK HSIN-CHU, TAIWAN, R. O. C.

Report No. : CE/2006/51428

Date : 2006/05/12

Page : 4 of 4

Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 對本報告內容或外觀之任何未經授權之變更、僞造、窳改皆屬非法,違犯者將會被依法追訴。