查询CY7C140供应商

专业PCB打样工厂,24小时加急出货 捷多邦

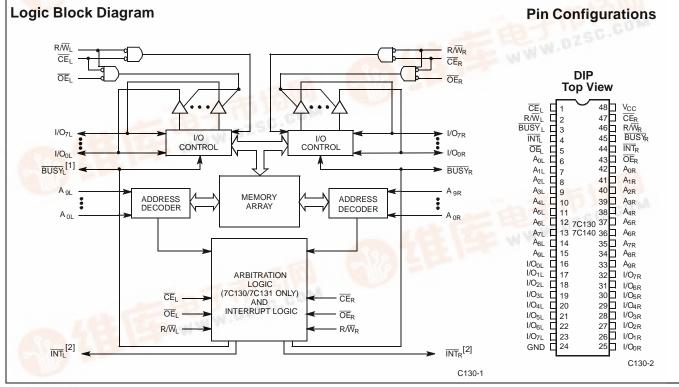
CY7C130/CY7C131 CY7C140/CY7C141

Features

 True Dual-Ported memory cells which allow simultaneous reads of the same memory location

PRESS

- 1K x 8 organization
- 0.65-micron CMOS for optimum speed/power
- High-speed access: 15 ns
- Low operating power: I_{CC} = 110 mA (max.)
- Fully asynchronous operation
- Automatic power-down
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using slave CY7C140/CY7C141
- BUSY output flag on CY7C130/CY7C131; BUSY input on CY7C140/CY7C141
- INT flag for port-to-port communication
- · Available in 48-pin DIP (CY7C130/140), 52-pin PLCC and 52-pin TQFP
- Pin-compatible and functionally equivalent to WWW.DZSC.COM IDT7130/IDT7140

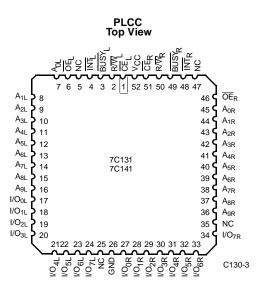

1K x 8 Dual-Port Static RAM

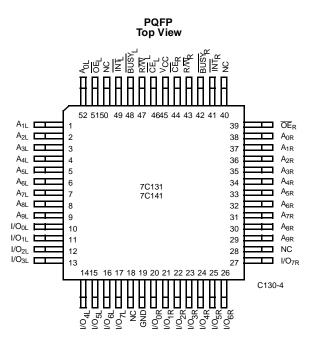
Functional Description

The CY7C130/CY7C131/CY7C140 and CY7C141 are high-speed CMOS 1K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/ CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dual-port device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.

Each port has independent control pins; chip enable (CE), write enable (R/W), and output enable (OE). Two flags are provided on each port, BUSY and INT. BUSY signals that the port is trying to access the same location currently being accessed by the other port. INT is an interrupt flag indicating that data has been placed in a unique location (3FF for the left port and 3FE for the right port). An automatic power-down feature is controlled independently on each port by the chip enable (\overline{CE}) pins.

The CY7C130 and CY7C140 are available in 48-pin DIP. The CY7C131 and CY7C141 are available in 52-pin PLCC and PQFP.


Notes:


df.dzsc.com

CY7C130/CY7C131 (Master): <u>BUSY</u> is open drain output and requires pull-up resistor CY7C140/CY7C141 (Slave): BUSY is input. Open drain outputs: pull-up resistor required.

Pin Configuration (continued)

Selection Guide

		7C131-15 ^[3] 7C141-15	7C131-25 ^[3] 7C141-25	7C130-30 7C131-30 7C140-30 7C141-30	7C130-35 7C131-35 7C140-35 7C141-35	7C130-45 7C131-45 7C140-45 7C141-45	7C130-55 7C131-55 7C140-55 7C141-55
Maximum Access Time (ns)		15	25	30	35	45	55
Maximum Operating	Com'l/Ind	190	170	170	120	120	110
Current (mA)	Military				170	170	120
Maximum Standby	Com'l/Ind	75	65	65	45	45	35
Current (mA)	Military				65	65	45

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with Power Applied55°C to +125°C	;
Supply Voltage to Ground Potential (Pin 48 to Pin 24)0.5V to +7.0V	/
DC Voltage Applied to Outputs in High Z State0.5V to +7.0V	/
DC Input Voltage3.5V to +7.0V	/
Output Current into Outputs (LOW)	•

Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001	V
	000	

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%
Military ^[4]	–55°C to +125°C	5V ± 10%

15 and 25-ns version available only in PLCC/PQFP packages. 3. 4.

 T_A is the "instant on" case temperature

7C130-30^[3] 7C130-35.45 7C130-55 7C131-25,30 7C131-35,45 7C131-55 7C131-15^[3] 7C140-35,45 7C140-30 7C140-55 7C141-15 7C141-25,30 7C141-35,45 7C141-55 Parame-Unit ter Description **Test Conditions** Min. Max. Min. Max. Min. Max. Min. Max. Output HIGH 2.4 2.4 V $V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$ 2.4 2.4 VOH Voltage Output LOW $I_{OL} = 4.0 \text{ mA}$ 0.4 0.4 0.4 0.4 V VOL Voltage $I_{OL} = 16.0 \text{ mA}^{[6]}$ 0.5 0.5 0.5 0.5 VIH Input HIGH Voltage 2.2 2.2 2.2 2.2 V Input LOW Voltage 0.8 V 0.8 0.8 0.8 V_{IL} Input Leakage $GND \leq V_{I} \leq V_{CC}$ -5 +5 -5 +5 -5 +5 -5 +5 μΑ I_{IX} Current $GND \leq V_O \leq V_{CC},$ Output Disabled Output Leakage -5 -5 +5 -5 -5 +5 +5 +5 μΑ loz Current Output Short V_{CC} = Max., -350 -350-350 -350 los mΑ Circuit Current^[7, 8] V_{OUT} = GND $\overline{CE} = V_{IL},$ Outputs Open, $f = f_{MAX}^{[9]}$ V_{CC} Operating Com'l 190 170 120 110 mΑ I_{CC} Supply Current Mil 170 120 \overline{CE}_{L} and $\overline{CE}_{R} \ge V_{IH}$, f = f_{MAX}[9] Standby Current Com'l 75 65 45 35 mΑ I_{SB1} Both Ports, Mil 65 45 TTL Inputs Standby Current \overline{CE}_{L} or $\overline{CE}_{R} \ge V_{IH}$, Com'l 135 115 90 75 mΑ I_{SB2} Active Port Out-One Port, Mil 115 90 TTL Inputs puts Open, $f = f_{MAX}^{[9]}$ Both Ports CE Standby Current Com'l 15 15 15 15 mΑ I_{SB3} and $\overline{CE}_{R} \ge$ Both Ports, Mil 15 15 $V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V,$ f = 0 CMOS Inputs One Port CE₁ or Standby Current Com'l 125 105 85 70 mΑ I_{SB4} $\begin{array}{l} \overline{CE}_R \geq V_{CC} - 0.2V, \\ V_{IN} \geq V_{CC} - 0.2V \\ \text{or } V_{IN} \leq 0.2V, \\ \text{Active Port Outputs} \end{array}$ One Port, Mil 105 85 CMOS Inputs Open, $f = f_{MAX}^{[9]}$

Electrical Characteristics Over the Operating Range^[5]

Shaded area contains preliminary information.

Notes:

See the last page of this specification for Group A subgroup testing information. BUSY and INT pins only. 5.

6. 7. 8.

Duration of the short circuit should not exceed 30 seconds. This parameter is guaranteed but not tested. At f=f_{MAX}, address and data inputs are cycling at the maximum frequency of read cycle of 1/t_{RC} and using AC Test Waveforms input levels of GND to 3V.

Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	15	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[5,10]

			7C131-15 ^[3] 7C141-15		7C130-25 ^[3] 7C131-25 7C140-25 7C141-25		7C130-30 7C131-30 7C140-30 7C141-30	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	.E							
t _{RC}	Read Cycle Time	15		25		30		ns
t _{AA}	Address to Data Valid ^[11]		15		25		30	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[11]		15		25		30	ns
t _{DOE}	OE LOW to Data Valid ^[11]		10		15		20	ns
t _{LZOE}	OE LOW to Low Z ^[8,12, 13]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[8,12, 13]		10		15		15	ns
t _{LZCE}	CE LOW to Low Z ^[8,12, 13]	3		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[8,12, 13]		10		15		15	ns
t _{PU}	CE LOW to Power-Up ^[8]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[8]		15		25		25	ns
WRITE CYC	LE ^[14]		•					
t _{WC}	Write Cycle Time	15		25		30		ns
t _{SCE}	CE LOW to Write End	12		20		25		ns
t _{AW}	Address Set-Up to Write End	12		20		25		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/W Pulse Width	12		15		25		ns
t _{SD}	Data Set-Up to Write End	10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[13]}$		10		15		15	ns
t _{LZWE}	R/\overline{W} HIGH to Low $Z^{[13]}$	0		0		0		ns

Shaded area contains preliminary information.

Notes:

Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified lo₁/1_{OH} and 30-pF load capacitance.
AC Test Conditions use V_{OH} = 1.6V and V_{OL} = 1.4V.
At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZCE}.
t_{LZCE}, t_{LZCE}, t_{LZCE}, t_{LZCE}, t_{LZCE}, t_{HZCE} and t_{HZCE} and t_{HZCE} as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
The internal write time of the memory is defined by the overlap of CS LOW and RW LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

7C130-25^[3] 7C130-30 7C131-25 7C131-30 7C131-15^[3] 7C140-25 7C140-30 7C141-15 7C141-25 7C141-30 Parameter Description Min. Max. Min. Max. Min. Max. Unit **BUSY/INTERRUPT TIMING BUSY LOW from Address Match** 15 20 20 ns t_{BLA} BUSY HIGH from Address Mismatch^[15] 15 20 20 t_{BHA} ns BUSY LOW from CE LOW 15 20 20 ns t_{BLC} BUSY HIGH from CE HIGH^[15] 15 20 20 ns t_{BHC} Port Set Up for Priority 5 5 5 t_{PS} ns t_{WB}^[16] R/W LOW after BUSY LOW 0 0 0 ns R/W HIGH after BUSY HIGH 13 20 30 ns t_{WH} **BUSY HIGH to Valid Data** 15 25 30 ns t_{BDD} Write Data Valid to Read Data Valid Note Note Note ns t_{DDD} 17 17 17 Write Pulse to Data Delay Note Note Note ns t_{WDD} 17 17 17 **INTERRUPT TIMING** R/W to INTERRUPT Set Time t_{WINS} 15 25 25 ns CE to INTERRUPT Set Time 15 25 25 ns t_{EINS} Address to INTERRUPT Set Time 15 25 25 ns tINS OE to INTERRUPT Reset Time^[15] 25 15 25 ns t_{OINR} CE to INTERRUPT Reset Time^[15] 15 25 25 ns t_{EINR} Address to INTERRUPT Reset Time^[15] 15 25 25 ns t_{INR}

Switching Characteristics Over the Operating Range^[5,10] (continued)

Shaded area contains preliminary information.

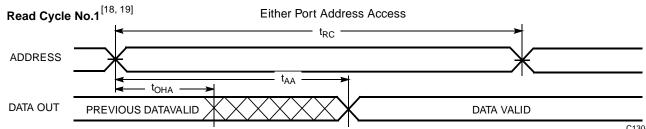
Notes:

15. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state. 16.

A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH. Dort B's and drawn in translation 17.

Port B's address is toggled. CE for Port B is toggled. RW for Port B is toggled during valid read.

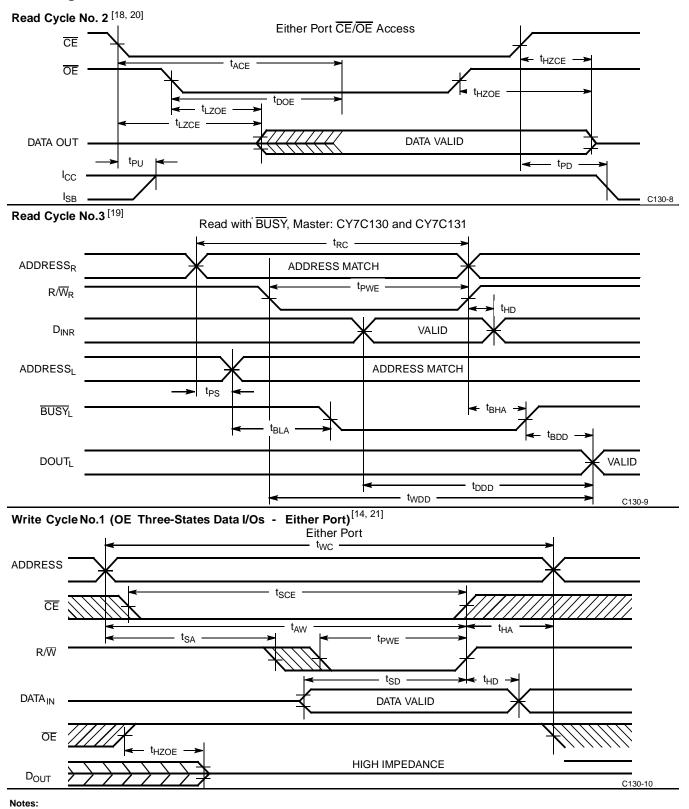
Switching Characteristics Over the Operating Range^[5,10]


		7C13 7C14	30-35 31-35 40-35 41-35	7C13 7C13 7C14 7C14	1-45 0-45	7C13 7C14	30-55 31-55 40-55 41-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	Ē							
t _{RC}	Read Cycle Time	35		45		55		ns
t _{AA}	Address to Data Valid ^[11]		35		45		55	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[11]		35		45		55	ns
t _{DOE}	OE LOW to Data Valid ^[11]		20		25		25	ns
t _{LZOE}	OE LOW to Low Z ^[8,12, 13]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[8,12, 13]		20		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[8,12, 13]	5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[8,12, 13]		20		20		25	ns
t _{PU}	CE LOW to Power-Up ^[8]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[8]		35		35		35	ns

		7C130-35 7C131-35 7C140-35 7C141-35		7C130-45 7C131-45 7C140-45 7C141-45		7C130-55 7C131-55 7C140-55 7C141-55		
Parameter	Parameter Description		Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYC	LE ^[14]							
t _{WC}	Write Cycle Time	35		45		55		ns
t _{SCE}	CE LOW to Write End	30		35		40		ns
t _{AW}	Address Set-Up to Write End	30		35		40		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/\overline{W} Pulse Width	25		30		30		ns
t _{SD}	Data Set-Up to Write End	15		20		20		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[13]}$		20		20		25	ns
t _{LZWE}	R/W HIGH to Low Z ^[13]	0		0		0		ns
BUSY/INTER	RRUPT TIMING							
t _{BLA}	BUSY LOW from Address Match		20		25		30	ns
t _{BHA}	BUSY HIGH from Address Mismatch ^[15]		20		25		30	ns
t _{BLC}	BUSY LOW from CE LOW		20		25		30	ns
t _{BHC}	BUSY HIGH from CE HIGH ^[15]		20		25		30	ns
t _{PS}	Port Set Up for Priority	5		5		5		ns
t _{WB} ^[16]	R/W LOW after BUSY LOW	0		0		0		ns
t _{WH}	R/W HIGH after BUSY HIGH	30		35		35		ns
t _{BDD}	BUSY HIGH to Valid Data		35		45		45	ns
t _{DDD}	Write Data Valid to Read Data Valid		Note 17		Note 17		Note 17	ns
t _{WDD}	Write Pulse to Data Delay		Note 17		Note 17		Note 17	ns
INTERRUPT	TIMING				•		•	•
t _{WINS}	R/W to INTERRUPT Set Time		25		35		45	ns
t _{EINS}	CE to INTERRUPT Set Time		25		35		45	ns
t _{INS}	Address to INTERRUPT Set Time		25		35		45	ns
tOINR	OE to INTERRUPT Reset Time ^[15]		25		35		45	ns
t _{EINR}	CE to INTERRUPT Reset Time ^[15]		25		35		45	ns
t _{INR}	Address to INTERRUPT Reset Time ^[15]		25		35		45	ns

Switching Characteristics Over the Operating $Range^{[5,10]}$ (continued)

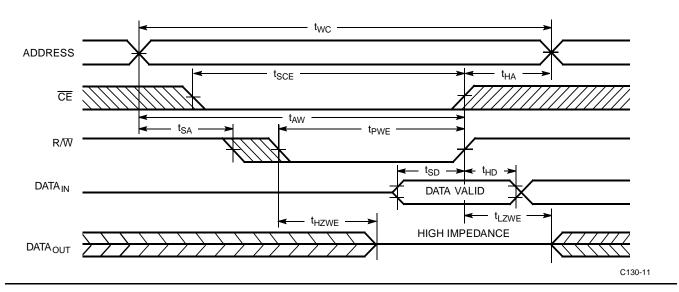
Switching Waveforms



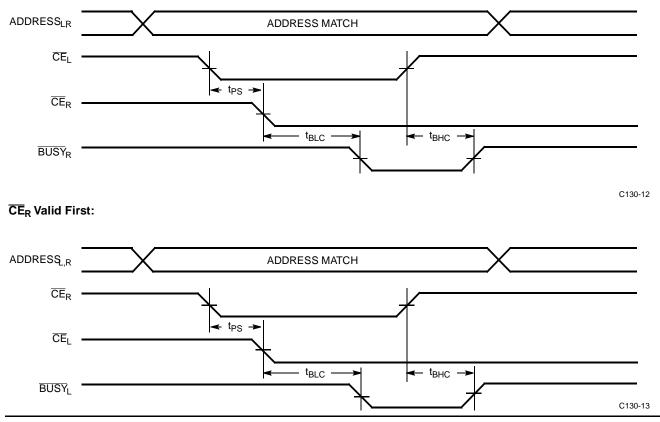
Notes:

18. R/\overline{W} is HIGH for read cycle. 19. Device is continuously selected, $\overline{CE} = V_{IL}$ and $\overline{OE} = V_{IL}$.

Switching Waveforms (continued)



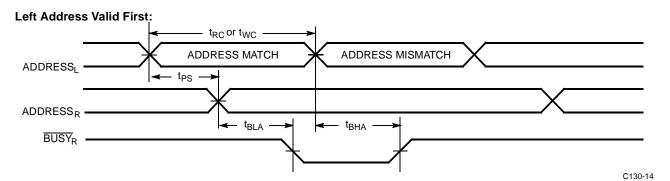
Address valid prior to or coincident with CE transition LOW.
If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t_{PWE} or t_{HZWE} + t_{SD} to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.


Switching Waveforms (continued)

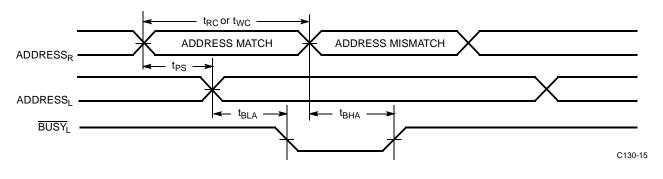
Write Cycle No. 2 (R/ \overline{W} Three-States Data I/Os - Either Port)^[15, 22]

Busy Timing Diagram No. 1 (CE Arbitration)

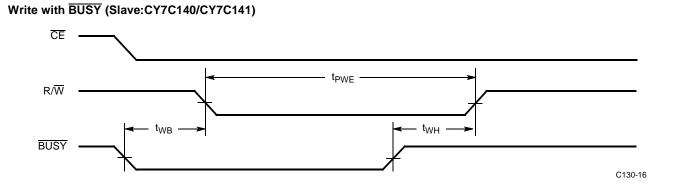
CE_L Valid First:



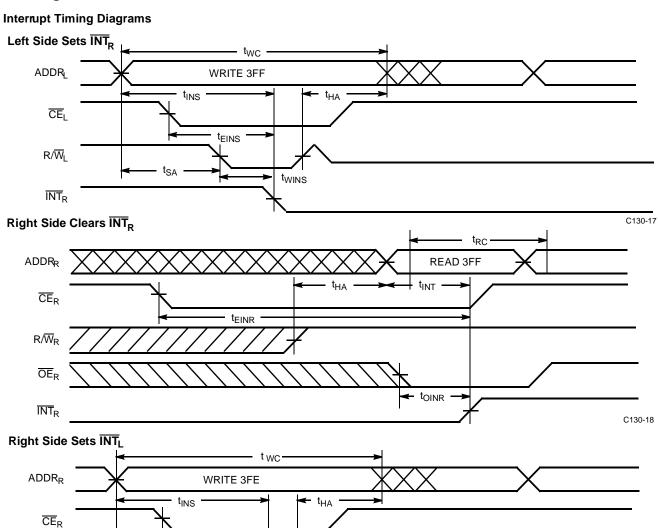
22. If the CE LOW transition occurs simultaneously with or after the RW LOW transition, the outputs remain in the high-impedance state.

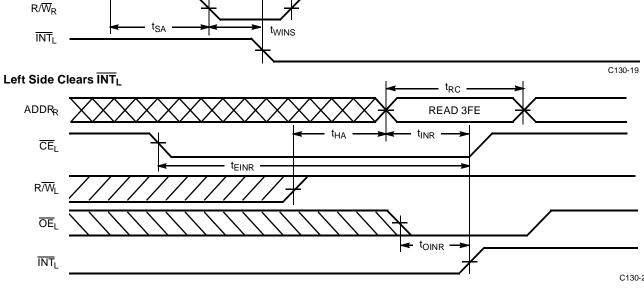


Switching Waveforms (continued)

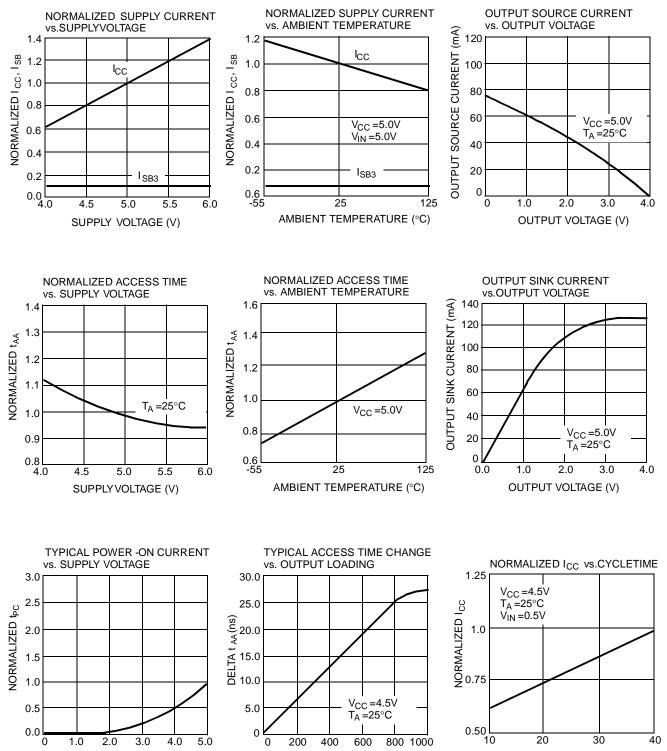

Busy Timing Diagram No. 2 (Address Arbitration)

Right Address Valid First:




Busy Timing Diagram No. 3

Switching Waveforms (continued)



t_{EINS}

Typical DC and AC Characteristics

SUPPLY VOLTAGE (V)

CAPACITANCE (pF)

CYCLE FREQUENCY (MHz)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C130-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C130-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
45	CY7C130-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
55	CY7C130-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C131-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-15NC	N52	52-Pin Plastic Quad Flatpack	1
25	CY7C131-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-25NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-25NI	N52	52-Pin Plastic Quad Flatpack	
30	CY7C131-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-30NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C131-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-35NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-35NI	N52	52-Pin Plastic Quad Flatpack	
45	CY7C131-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-45NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-45NI	N52	52-Pin Plastic Quad Flatpack	
55	CY7C131-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-55NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C131-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-55NI	N52	52-Pin Plastic Quad Flatpack	1

Shaded area contains preliminary information.

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C140-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C140-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
45	CY7C140-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
55	CY7C140-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C141-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-15NC	7C141-15NC N52 52-Pin Plastic Quad Flatpack		
25	CY7C141-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-25NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-25NI	N52	52-Pin Plastic Quad Flatpack	
30	CY7C141-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-30NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C141-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-35NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-35NI	N52	52-Pin Plastic Quad Flatpack	
45	CY7C141-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-45NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-45JI J69 52-Lead Plastic Leaded Chip C		52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-45NI	N52	52-Pin Plastic Quad Flatpack	1
55	CY7C141-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-55NC	N52	52-Pin Plastic Quad Flatpack	1
	CY7C141-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-55NI	N52	52-Pin Plastic Quad Flatpack	1

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

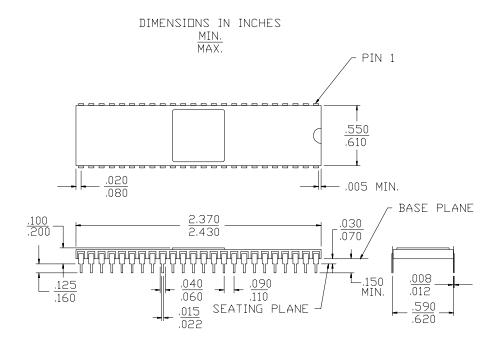
DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
ICC	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3
I _{SB3}	1, 2, 3
I _{SB4}	1, 2, 3

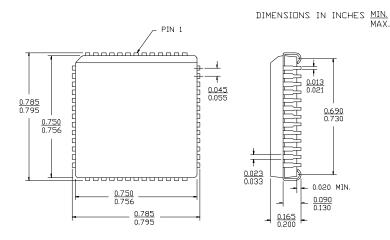
Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Parameter	Subgroups
BUSY/INTERRUPT TIMING	
t _{BLA}	7, 8, 9, 10, 11
t _{BHA}	7, 8, 9, 10, 11
t _{BLC}	7, 8, 9, 10, 11
t _{BHC}	7, 8, 9, 10, 11
t _{PS}	7, 8, 9, 10, 11
t _{WINS}	7, 8, 9, 10, 11
t _{EINS}	7, 8, 9, 10, 11
t _{INS}	7, 8, 9, 10, 11
t _{OINR}	7, 8, 9, 10, 11
t _{EINR}	7, 8, 9, 10, 11
t _{INR}	7, 8, 9, 10, 11
BUSY TIMING	
t _{WB} [23]	7, 8, 9, 10, 11
t _{WH}	7, 8, 9, 10, 11
t _{BDD}	7, 8, 9, 10, 11

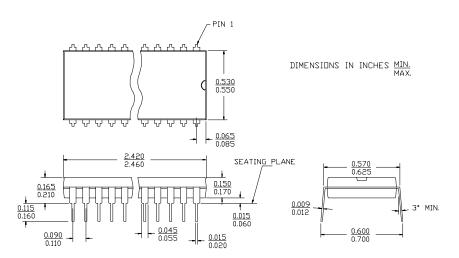

Note:

23. CY7C140/CY7C141 only.


Document #: 38-00027-M

Package Diagrams

52-Lead Plastic Leaded Chip Carrier J69



48-Lead (600-Mil) Sidebraze DIP D26

Package Diagrams (continued)

48-Lead (600-Mil) Molded DIP P25

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize.