－Standard＇16244－Type Pinout
－ $5-\Omega$ Switch Connection Between Two Ports
－TTL－Compatible Input Levels
－Package Options Include Plastic Thin Shrink Small－Outline（DGG），Thin Very Small－Outline（DGV），and Shrink Small－Outline（DL）Packages，and Ceramic Flat（WD）Package

description

The＇CBT16244 devices provide 16 bits of high－speed TTL－compatible bus switching in a standard＇16244 device pinout．The low on－state resistance of the switch allows connections to be made with minimal propagation delay．
These devices are organized as four 4－bit low－impedance switches with separate output－enable（ $\overline{\mathrm{OE}}$ ）inputs．When $\overline{\mathrm{OE}}$ is low，the switch is on，and data can flow from port A to port B ，or vice versa．When $\overline{O E}$ is high，the switch is open，and a high－impedance state exists between the two ports．
The SN54CBT16244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74CBT16244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

FUNCTION TABLE
（each 4－bit bus switch）

INPUT $\overline{\mathrm{OE}}$	OUTPUTS \mathbf{A}, B
L	A port＝B port
H	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply		-0.5 V to 7 V
Input voltage range, V_{I} (see Note 1)		-0.5 V to 7 V
Continuous channel current		28 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$		-50 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2)	DGG package	$70^{\circ} \mathrm{C} / \mathrm{W}$
	DGV package	$58^{\circ} \mathrm{C} / \mathrm{W}$
	DL package	$63^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$		${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
esses beyond those listed under "absolute maximum ratings" ctional operation of the device at these or any other conditio plied. Exposure to absolute-maximum-rated conditions for ex	may cause permanen ons beyond those ind tended periods may	ratings only, and conditions" is not
ES: 1. The input and output negative-voltage ratings may 2. The package thermal impedance is calculated in accos	be exceeded if the	observed.

recommended operating conditions (see Note 3)

		SN54CBT16244		SN74CBT16244		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4	5.5	4	5.5	V
V_{IH}	High-level control input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level control input voltage		0.8		0.8	V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54CBT16244			SN74CBT16244			UNIT			
		MIN	TYP†	MAX	MIN	TYP†	MAX							
$\mathrm{V}_{\text {IK }}$					$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2			-1.2	V
1		$\mathrm{V}_{\text {CC }}=0$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				10			10	$\mu \mathrm{A}$			
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				± 1			± 1				
ICC		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{I} \mathrm{O}=0$,				3.2			3	$\mu \mathrm{A}$			
${ }^{\text {I }} \mathrm{CC}^{\ddagger}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, }$ Other inputs at V_{CC} or GND	One input at 3.4 V ,				2.5			2.5	mA			
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0			2.5			2.5			pF			
$\mathrm{Cio}_{\mathrm{io}}$ (OFF)		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$			4.5			4.5		pF			
$\mathrm{r}_{\mathrm{on}}{ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\boldsymbol{l}=15 \mathrm{~mA}$			20			20	Ω			
			$\mathrm{V}_{\mathrm{I}}=0$,	$\boldsymbol{I}=64 \mathrm{~mA}$		5	10		5	7				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$,	$\boldsymbol{I}=30 \mathrm{~mA}$		5	10		5	7				
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		8	14		8	12				

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
\S Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54CBT16244		SN74CBT16244		UNIT
			$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$t_{p d}$ II	A or B	B or A		0.8*	0.35	0.25	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	A or B	10.3	19.2	5.5	$1 \quad 5.1$	ns
${ }^{\text {d }}$ dis	$\overline{\mathrm{OE}}$	A or B	9.7	18.2	5.2	15.4	ns

[^0]
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

TEST	S1
$\mathrm{t}_{\text {pd }}$	Open
$\mathrm{tPLZ}^{\mathrm{ttPZL}}$	7 V
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{tPZH}$	Open

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: * On products compliant to MIL-PRF-38535, this parameter is not production tested.

 IT The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

