查询SN74ALVCH16245供应商

捷多邦,专业PCB打样工厂,24小时**⑤N行4氏**LVCH16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES015F – JULY 1995 – REVISED FEBRUARY 1999

● Member of the Texas Instruments Widebus™ Family	DGG, DGV, OR DL PACKAGE (TOP VIEW)
● EPIC [™] (Enhanced-Performance Implanted CMOS) Submicron Process	1DIR 1 48 10E 1B1 2 47 1A1
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) 	1B1 2 47 1A1 1B2 3 46 1A2 GND 4 45 GND 1B3 5 44 1A3
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown 	1B5 8 41 1A5 1B6 9 40 1A6
Resistors Package Options Include Plastic 300-mil	GND 10 39 GND 1B7 11 38 1A7
Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages	1B8 12 37 1A8 2B1 13 36 2A1 2B2 14 35 2A2
description	GND [15 34] GND 2B3 [16 33] 2A3 2B4 [17 32] 2A4
This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V V _{CC} operation.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
The SN74ALVCH16245 is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.	GND 21 28 GND 2B7 22 27 2A7 2B8 23 26 2A8 2DIR 24 25 20E
This device can be used as two 8-bit transceivers	W.DZSC.CO

or one 16-bit transceiver. It allows data

transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

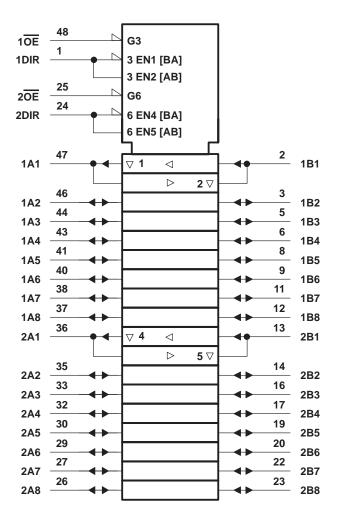
To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

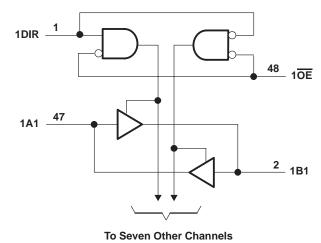
The SN74ALVCH16245 is characterized for operation from –40°C to 85°C.

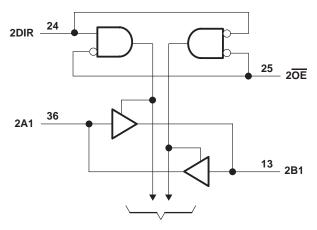
	FUNCTION TABLE (each 8-bit section)									
	INPUTS									
	OE	DIR	OPERATION							
	Let	N.L	B data to A bus							
9	OL.	Н	A data to B bus							
	Н	Х	Isolation							

d


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Cand Widebus are trademarks of Texas Instruments Incorporated.


SN74ALVCH16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES015F – JULY 1995 – REVISED FEBRUARY 1999


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I : Except I/O ports (see Note 1)	–0.5 V to 4.6 V 5 V to V _{CC} + 0.5 V
Output-voltage range, V_O (see Notes 1 and 2)0. Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Continuous output current, I _O	
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	89°C/W
DGV package	
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH VIL V0 IOH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V _{IL} V _I	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V		
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		
VI	Input voltage	$\begin{tabular}{ c c c c c c } \hline 1.65 & 3.6 \\ \hline V_{CC} = 1.65 \ V \ to \ 1.95 \ V & 0.65 \times V_{CC} \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 1.7 \\ \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V & 2 \\ \hline V_{CC} = 1.65 \ V \ to \ 1.95 \ V & 0.35 \times V_{CC} \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 0.7 \\ \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V & 0.8 \\ \hline \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V & 0.8 \\ \hline \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V & 0.8 \\ \hline \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V & 0.8 \\ \hline \hline V_{CC} = 2.3 \ V & -4 \\ \hline V_{CC} = 2.3 \ V & -12 \\ \hline V_{CC} = 2.7 \ V & -12 \\ \hline V_{CC} = 3 \ V & -24 \\ \hline V_{CC} = 2.3 \ V & 12 \\ \hline V_{CC} = 2.7 \ V & 12 \\ \hline V_{CC} = 3 \ V & 24 \\ \hline \hline V_{CC} = 3 \ V & 24 \\ \hline \hline \end{array}$		VCC	V	
Vo	Output voltage		0	VCC	V	
$\begin{tabular}{ c c c c c } \hline V_{CC} & Supply voltage & 1.65 \\ \hline V_{IH} & High-level input voltage & V_{CC} = 1.65 \lor to 1.95 \lor 0.65 \times V_{CC} \\ \hline V_{CC} = 2.3 \lor to 2.7 \lor 1.7 \\ \hline V_{CC} = 2.3 \lor to 2.7 \lor 1.7 \\ \hline V_{CC} = 2.7 \lor to 3.6 \lor 2 \\ \hline V_{IL} & Low-level input voltage & V_{CC} = 1.65 \lor to 1.95 \lor $		V _{CC} = 1.65 V		-4		
		V _{CC} = 2.3 V		-12		
		-12	mA			
		-24				
		V _{CC} = 1.65 V		4		
1		$V_{CC} = 2.3 V$		$\begin{array}{c c} 0.65 \times V_{CC} \\ \hline 1.7 \\ \hline 2 \\ \hline 0.35 \times V_{CC} \\ \hline 0.7 \\ \hline 0.8 \\ \hline 0 \\ V_{CC} \\ \hline 0 \\ V_{CC} \\ \hline -4 \\ \hline -12 \\ \hline -12 \\ \hline -24 \\ \hline 4 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 24 \\ \hline 10 \\ \end{array}$	mA	
VI Vo IOH	Low-level output current $V_{CC} = 2.7 V$			12	mA	
				24		
$\Delta t / \Delta v$	Input transition rise or fall rate			10	ns/V	
Τ _Α	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAME	TER	TEST C	ONDITIONS	VCC	MIN	TYP [†]	MAX	UNIT	
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	.2			
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.2				
		I _{OH} = -6 mA		2.3 V	2				
V _{OH} V _{OL} II II(hold)		2.3 V	1.7			V			
	I _{OH} = -12 mA		2.7 V	2.2					
			3 V	2.4					
		I _{OH} = -24 mA		3 V	2				
		l _{OL} = 100 μA		1.65 V to 3.6 V			0.2		
		I _{OL} = 4 mA		1.65 V			0.45		
		I _{OL} = 6 mA		2.3 V			0.4	V	
	le 12 mA		2.3 V			0.7	v		
		I _{OL} = 12 mA	2.7 V			0.4			
		I _{OL} = 24 mA	3 V			0.55			
Ц		$V_{I} = V_{CC}$ or GND		3.6 V			±5	μΑ	
		V _I = 0.58 V	1.65 V	25					
		V _I = 1.07 V	1.65 V	-25					
		V _I = 0.7 V	2.3 V	45					
ll(hold)		V _I = 1.7 V		2.3 V	-45			μA	
		V _I = 0.8 V		3 V	75			-	
		V _I = 2 V	3 V	-75					
		$V_{I} = 0$ to 3.6 V [‡]	3.6 V			±500			
IOZ§		V _O = V _{CC} or GND		3.6 V			±10	10 μA	
ICC		$V_{I} = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ	
ΔICC		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	0 μΑ	
C _i Conti	rol inputs	V _I = V _{CC} or GND		3.3 V		4		pF	
i	B ports	V _O = V _{CC} or GND		3.3 V		8		pF	

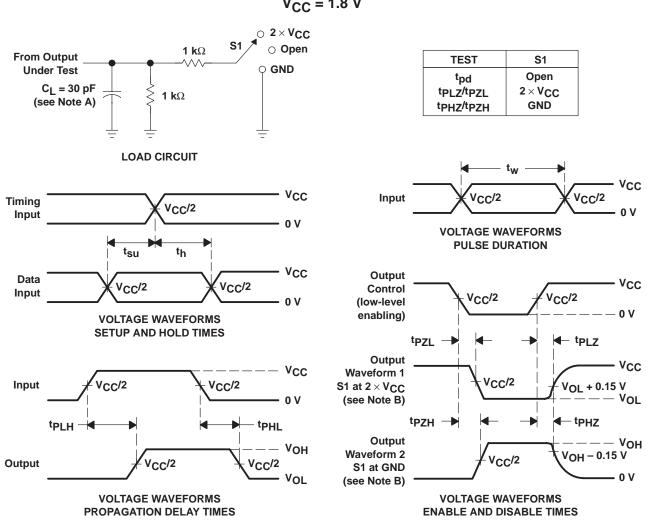
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § For I/O ports, the parameter I_{OZ} includes the input leakage current.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PAR	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V		V _{CC} =	V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V	
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	
	^t pd	A or B	B or A	¶	1	3.7		3.6	1	3	ns
	t _{en}	OE	A or B	¶	1	5.7		5.4	1	4.4	ns
	^t dis	OE	A or B	¶	1	5.2		4.6	1	4.1	ns

 \P This information was not available at the time of publication.


SN74ALVCH16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

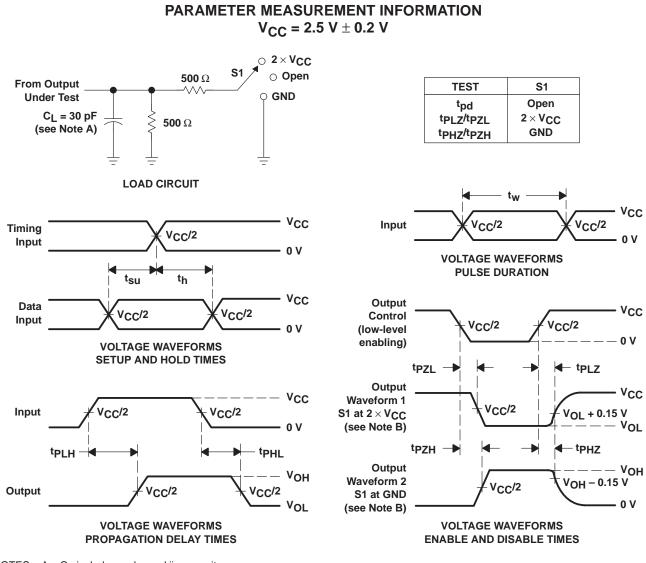
SCES015F - JULY 1995 - REVISED FEBRUARY 1999

operating characteristics, $T_A = 25^{\circ} C$

	PARAMETER		TEST CON		V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	TANAMETER	PARAMETER			TYP	TYP	TYP		
	Power dissipation	Outputs enabled	C: 50 pF	£ 10 MU-	†	22	29	рF	
Cpd	capacitance	Outputs disabled	CL = 50 pF,	f = 10 MHz	†	4	5	рг	

[†]This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR≤10 MHz, Z_O = 50 Ω, t_f≤2 ns. t_f≤2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

SN74ALVCH16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES015F – JULY 1995 – REVISED FEBRUARY 1999

NOTES: A. CL includes probe and jig capacitance.

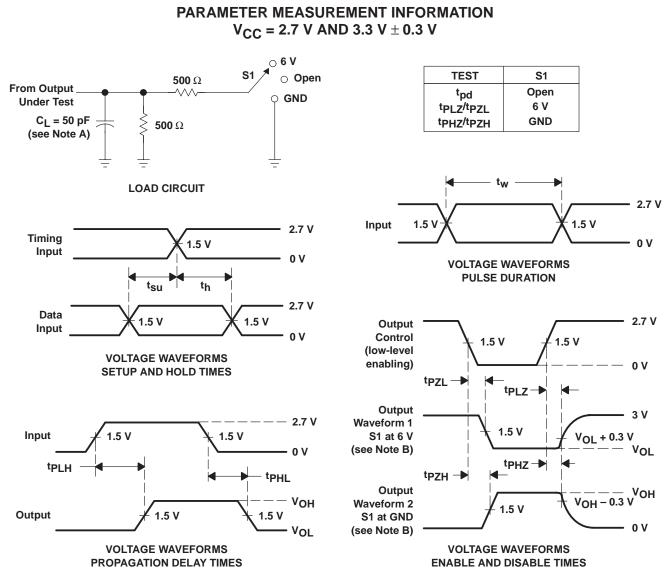

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SN74ALVCH16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCES015F - JULY 1995 - REVISED FEBRUARY 1999

NOTES: A. $\ensuremath{\mathsf{C}}_L$ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10$ MHz, $Z_{O} = 50 \Omega$, $t_{f} \le 2.5$ ns. $t_{f} \le 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated