

UNITRODE

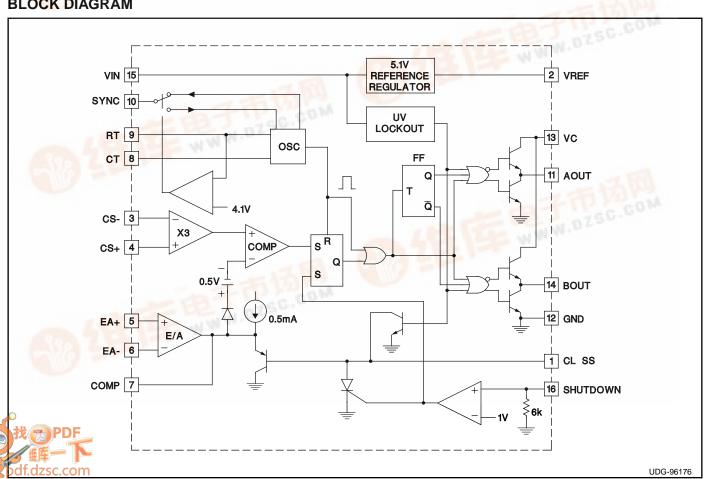
UC1856 UC2856 **UC3856**

Improved Current Mode PWM Controller

FEATURES

- Pin-for-Pin Compatible With the UC3846
- 65ns Typical Delay From Shutdown to Outputs, and 50ns Typical Delay From Sync to Outputs
- Improved Current Sense Amplifier With Reduced Noise Sensitivity
- Differential Current Sense with 3V Common Mode Range
- Trimmed Oscillator Discharge Current for Accurate Deadband Control
- Accurate 1V Shutdown Threshold
- High Current Dual Totem Pole Outputs (1.5A peak)
- TTL Compatible Oscillator SYNC Pin Thresholds
- 4kV ESD Protection

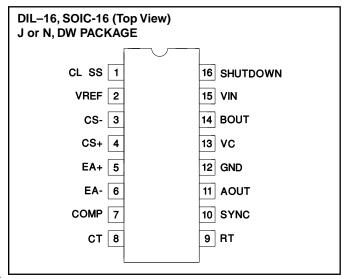
DESCRIPTION

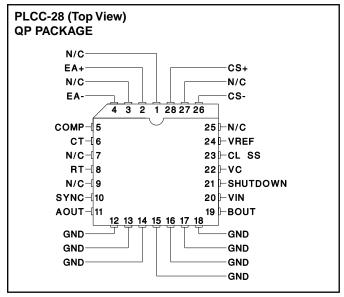

The UC3856 is a high performance version of the popular UC3846 series of current mode controllers, and is intended for both design upgrades and new applications where speed and accuracy are important. All input to output delays have been minimized, and the current sense output is slew rate limited to reduce noise sensitivity. Fast 1.5A peak output stages have been added to allow rapid switching of power FETs.

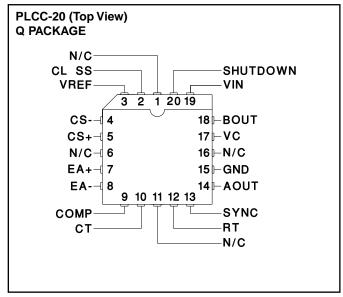
A low impedance TTL compatible sync output has been implemented with a tri-state function when used as a sync input.

Internal chip grounding has been improved to minimize internal "noise" caused when driving large capacitive loads. This, in conjunction with the improved differential current sense amplifier results in enhanced noise immunity.

Other features include a trimmed oscillator current (8%) for accurate frequency and dead time control; a 1V, 5% shutdown threshold; and 4kV minimum ESD protection on all pins.


BLOCK DIAGRAM




ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+40V
Collector Supply Voltage	+40V
Output Current, Source or Sink	
DC	0.5A
Pulse (0.5μs)	2.0A
Error Amp Inputs	0.3V to +VIN
Shutdown Input	0.3V to +10V
Current Sense Inputs	0.3V to +3V
SYNC Output Current	±10mA
Error Amplifier Output Current	–5mA
Soft Start Sink Current	
Oscillator Charging Current	5mA
Power Dissipation at T _A = 25°C (Note 2)	
Power Dissipation at Tc = 25°C (Note 2)	2000mW
Junction Temperature	
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C
All voltages are with respect to Ground. Curi	ents are positive
into, negative out of the specified terminal. C	Consult packaging
section of databook for thermal limitations at	nd considerations of
package.	

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

		UC1856/UC2856			UC3856			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reference Section								
Output Voltage	$T_J = 25$ °C, $I_O = 1$ mA	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	VIN = 8V to $40V$			20			20	mV
Load Regulation	Io = -1mA to -10mA			15			15	mV
Total Output Variation	Line, Load, and Temperature	5.00		5.20	4.95		5.25	V
Output Noise Voltage	10Hz < f < 10kHz, T _J = 25°C		50			50		μV
Long Term Stability	T _J = 125°C, 1000 Hrs (Note 2)		5	25		5	25	mV
Short Circuit Current	VREF = 0V	-25	-45	-65	-25	-45	-65	mA
Oscillator Section	·							
Initial Accuracy	T _J = 25°C	180	200	220	180	200	220	kHz
	Over Operating Range	170		230	170		230	kHz

ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

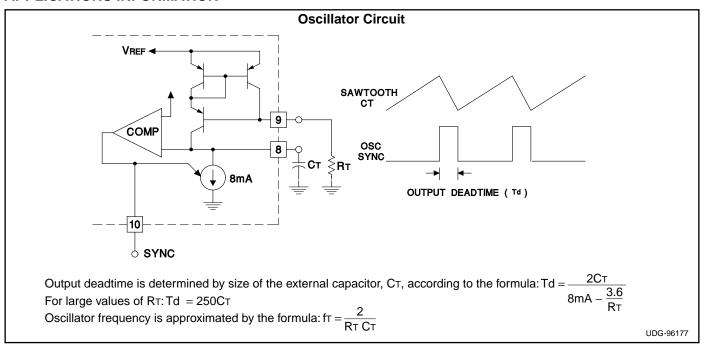
	TEST CONDITIONS	UC.	1856/U	22856	UC3856			
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Oscillator Section (cont.)								
Voltage Stability	VIN = 8V to 40V			2			2	%
Discharge Current	T _J = 25°C, V _C T = 2V	7.5	8.0	8.8	7.5	8.0	8.8	mA
	Vct = 2V	6.7	8.0	8.8	6.7	8.0	8.8	mA
Sync Output High Level	Io = -1mA	2.4	3.6		2.4	3.6		V
Sync Output Low Level	Io = +1mA		0.2	0.4		0.2	0.4	V
Sync Input High Level	CT = 0V, RT = VREF	2.0	1.5		2.0	1.5		V
Sync Input Low Level	CT = 0V, RT = VREF		1.5	0.8		1.5	0.8	V
Sync Input Current	CT = 0V, RT = VREF		1	10		1	10	μA
Cyric input Guirent	$V_{SYNC} = 5V$.0	μ.,
Sync Delay to Outputs	CT = 0V, RT = VREF		50	100		50	100	ns
cylic Polay to Calpute	Vsync = 0.8V to 2V							
Error Amplifier Section	, vee e.e. te = :					<u> </u>		
Input Offset Voltage	Vcm = 2V			5			10	l mV
Input Bias Current				-1			-1	μА
Input Offset Current				500			500	nA
Common Mode Range	VIN = 8V to 40V	0		VIN – 2	0		VIN – 2	V
Open Loop Gain	Vo = 1.2V to 3V	80	100		80	100		dB
Unity Gain Bandwidth	T _J = 25°C	1	1.5		1	1.5		MHz
CMRR	VcM = 0V to 38V, VIN = 40V	75	100		75	100		dB
PSRR	VIN = 8V to 40V	80	100		80	100		dB
Output Sink Current	VID = -15mV, VCOMP = 1.2V	5	10		5	10		mA
Output Source Current	VID = 15mV, VCOMP = 2.5V	-0.4	-0.5		-0.4	-0.5		mA
Output High Level	VID = 50mV, RL (COMP) = 15k	4.3	4.6	4.9	4.3	4.6	4.9	V
Output Low Level	VID = -50mV, RL (COMP) = 15k		0.7	1		0.7	1	V
Current Sense Amplifier Section						1		
Amplifier Gain	Vcs-= 0V, CL SS Open (Notes 3,4)	2.5	2.75	3.0	2.5	2.75	3.0	V/V
Maximum Differential	CL SS Open (Note 3)	1.1	1.2		1.1	1.2		V
Input Signal (Vcs+ – Vcs-)	' ' '		1.2			1.2		`
· · · · · · · · · · · · · · · · · · ·	RL (COMP) = 15k		_	0.5			0.5	.,
Input Offset Voltage	VcL ss = 0.5V COMP Open (Note 3)		5	35		5	35	mV
CMRR	Vcm = 0V to 3V	60			60			dB
PSRR		60			60			dВ
Input Bias Current	VIN = 8V to 40V	60		1		1	2	
· · · · · · · · · · · · · · · · · · ·	Vol. 32 O.5V. COMP Open (Note 3)			_1 1	-3	-1	_3 1	μA
Input Offset Current	VcL ss = 0.5V, COMP Open (Note 3)	0		3	0		3	mA V
Input Common Mode Range	\/\/DEE_EA0\/	0	120	_	0	120		
Delay to Outputs	VEA+ = VREF, EA- = 0V		120	250		120	250	ns
Current Limit Adjust Section	CS+ - CS- = 0V to 1.5V							
Current Limit Adjust Section Current Limit Offset	Vcs- = 0V	0.43	0.5	0.57	0.43	0.5	0.57	V
Carron Linn Shoot	Vcs+ = 0V, COMP = Open (Note 3)	5. 10	0.0	0.07	0.10	0.0	0.07	*
Input Bias Current	VEA+ = VREF, VEA- = 0V		-10	-30		-10	-30	μΑ
Shutdown Terminal Section		I	1	1		-		
Threshold Voltage		0.95	1.00	1.05	0.95	1.00	1.05	V
Input Voltage Range		0		5	0		5	V

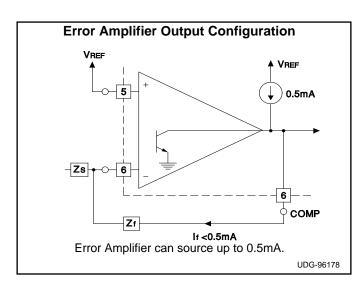
ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, $T_A = T_J$.

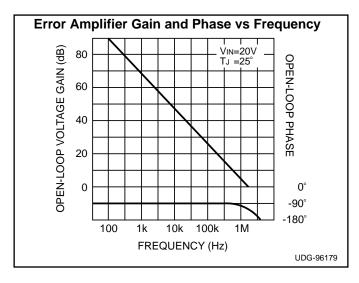
PARAMETER	TEST CONDITIONS	UC1856/UC2856						
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Shutdown Terminal Section (con	t.)	·						-
Minimum Latching	(Note 5)	3	1.5		3	1.5		mA
Current (IcL ss)								
Maximum Non-Latching	(Note 6)		1.5	0.8		1.5	8.0	mA
Current (IcL ss)								
Delay to Outputs	Vshutdown = 0 to 1.3V		65	110		65	110	ns
Output Section								_
Collector-Emitter Voltage		40			40			V
Off-State Bias Current	VC = 40V			250			250	μА
Output Low Level	IOUT = 20mA		0.1	0.5		0.1	0.5	V
	IOUT = 200mA		0.5	2.6		0.5	2.6	V
Output High Level	IOUT = -20mA	12.5	13.2		12.5	13.2		V
	IOUT = -200mA	12	13.1		12	13.1		V
Rise Time	C1 = 1nF		40	80		40	80	ns
Fall Time	C1 = 1nF		40	80		40	80	ns
UVLO Low Saturation	VIN = 0V, IOUT = 20mA		0.8	1.5		0.8	1.5	V
PWM Section		_			_			_
Maximum Duty Cycle		45	47	50	45	47	50	%
Minimum Duty Cycle				0			0	%
Undervoltage Lockout Section								
Startup Threshold			7.7	8.0		7.7	8.0	V
Threshold Hysterisis			0.7			0.7		V
Total Standby Current								
Supply Current			18	23		18	23	mA

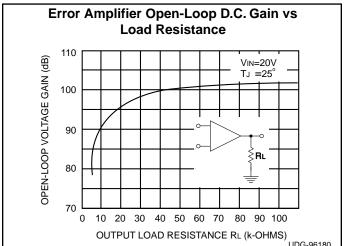
Note 1: All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal.

Note 2: This parameter, although guaranteed over the recommended operating conditions is not 100% tested in production.

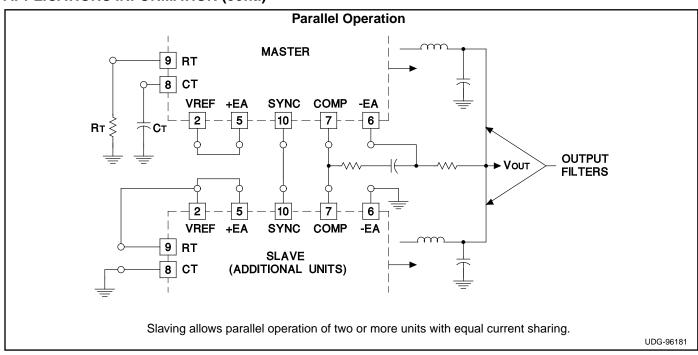

Note 3: Parameter measured at trip point of latch with VEA+ = VREF, VEA- = 0V.

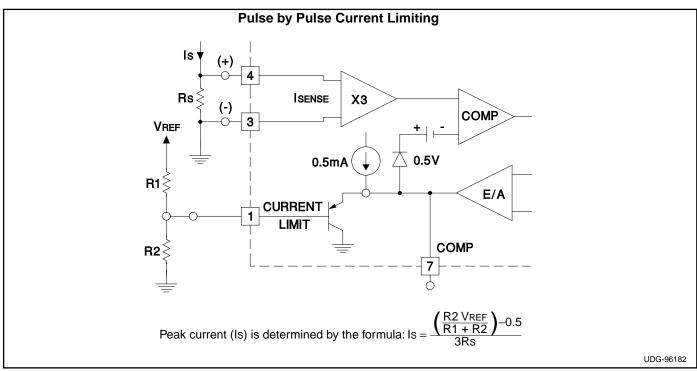

Note 4: Amplifier gain defined as:

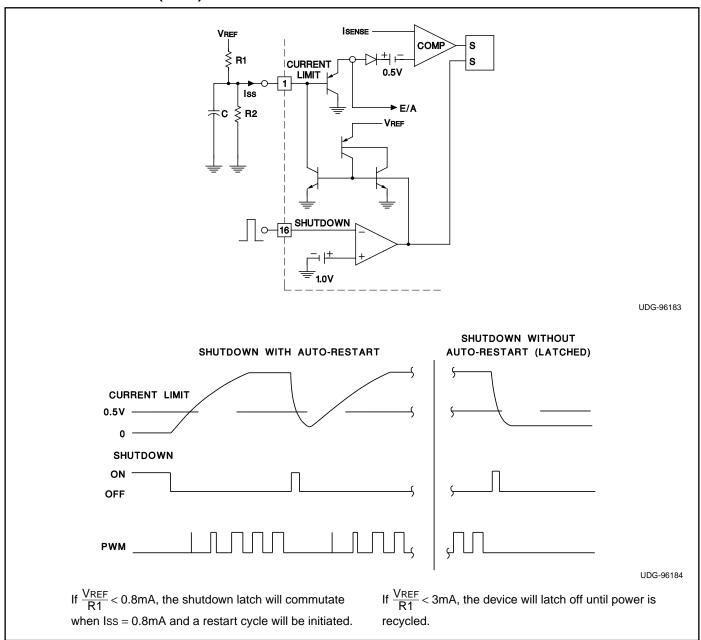

 $G = \frac{\Delta V COMP}{\Delta V CS +};$ $\Delta Vcs = 0V \text{ to } 1.0V$


Note 5: Current into CL SS guaranteed to latch circuit into shutdown state. Note 6: Current into CL SS guaranteed not to latch circuit into shutdown state.

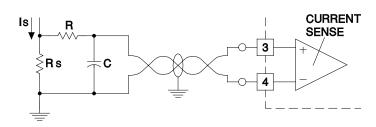
APPLICATIONS INFORMATION



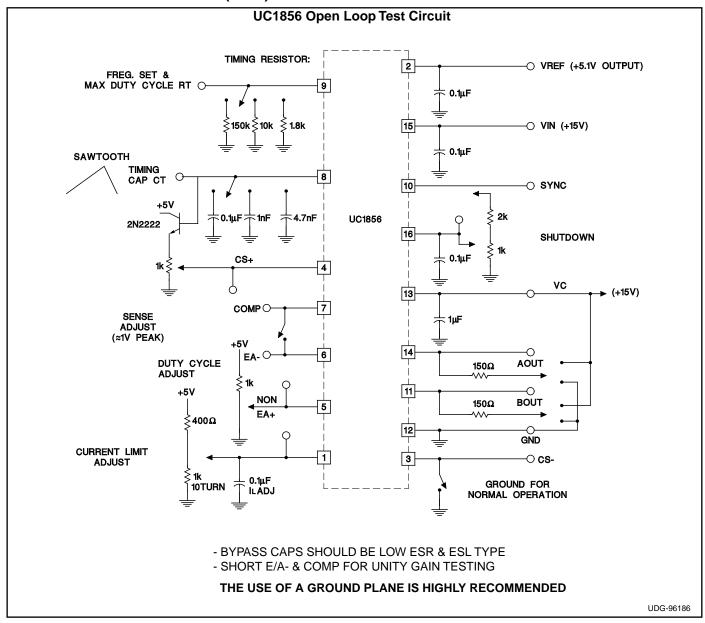




APPLICATIONS INFORMATION (cont.)



APPLICATIONS DATA (cont.)


Current Sense Amplifier Connections

A small RC filter may be required in some applications to reduce switch transients. Differential input allows remote, noise sensing.

UDG-96185

APPLICATIONS INFORMATION (cont.)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated