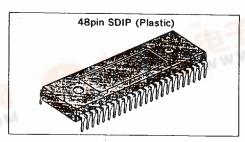
查询CXA1213BS供应商 SONY.

专业PCB‡T#業工「

Y/C/Jungle IC for PAL/NTSC

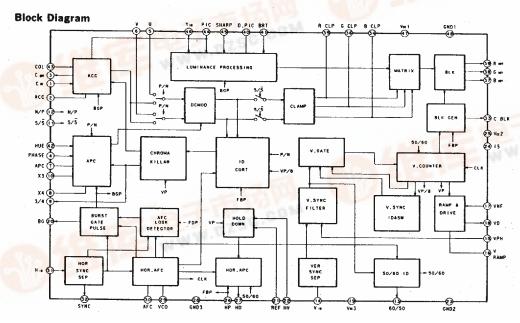

T-77-07-09

Description

The CXA1213AS is a Y/chroma/jungle signal processing IC of PAL, NTSC (4.43MHz, 3.58MHz) systems color TVs.

Features

- TV system is compatible with PAL, SECAM, and NTSC(4.43MHz,3.58MHz)through combination with the CXA1214P.
- No adjustment of H,V oscillation frequency by count down system.
- Built-in 50/60Hz automatic discrimination circuit and compulsory mode applicable.
- Built-in 3.58/4.43MHz color sub carrier oscillation frequency automatic discrimination circuit and compulsory mode applicable.
- Input prohibition gate function according to frequency of input vertical synchronization. (Noise elimination ability)
- Black expansion function. (New dynamic picture)
- · High speed blanking function which blanks interval of characters.


- · Built-in SHP circuit and OFF applicable.
- Auto white balance IC CXA1024S compatible.

Applications

Color decoder for PAL/NTSC system

Structure

Bipolar silicon monolithic IC

E90931-HP

CXA1213AS


T-7	7-0	17-1	09
-----	-----	------	----

Absolute Maximum Ratings	(Ta=25°	C)	
Supply voltage	V_{cc}	12	٧
Storage temperature	Tstg	-65 to +150	.C
Allowable power dissipation	Po	2.2	W
Recommended Operating Co	nditions		
Supply voltage	v_{cc}	9 ±1	٧

Topr

Pin Configuration

• Operating temperature

-20 to +75

CXA1213AS

Pin Description

No.	Symbol	Voltage	Equivalent circuit	Description
1	Cin	2.5V	1 147 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chroma input pin. Input signal after passing chroma B.P.F via capacitor.
2	ACC	Approx. 5.5V (At Typ. input)	2	External capacitance pin for ACC control. This pin voltage is to be ACC voltage.
3	Соит	SECAM : 5.85V SECAM : OV	3	ACC and chroma output pin after passing color control circuit. Pin voltage varies by SECAM/SECAM. At SECAM: 5.85V _{DC} At SECAM: 0V _{DC}
4	PHASE	4.5V	60 × 36 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	Phase control voltage input pin for PAL this pin is also applicable to forced killer input killer output and f_{SC} free run adjustment mode. V _{DD} : Forced fsc free run adjustment 2 to 8V: Phase control GND: Forced killer input or killer output
5	U	_	3 W G	U signal input pin after separating C_{OUT} signal at Pin 3 to U and V by using 1 H Delay Line.

CXA1213AS

No.	Symbol	Voltage	Equivalent circuit	Description
6	٧		©	V signal input pin after separating C_{OUT} signal at Pin 3 to U and V by using 1H Delay Line.
7	APC	6.7V	2K 2K 580K W 4 4 50P m	Lag lead filter pin for APC
8	.s X4	2 2	® \$2K \$0 ## ## ## ## ## ## ## ## ## ## ## ## ##	4.43MHz crystal pin for chroma VCO
9	3/4	At 3.58MHz output: 5.5V AT 4.43MHz output: GND	3 147 12K ₹12K 3 33K ## \$16K ##	Discrimination output pin of VCO oscillation frequency. High level(5.5V) at oscillation frequency 3.58MHz, Low level at oscillation frequency 4.43MHz. Also input pin applicable: Forced 3.58MHz at mode H and 4.43MHz at mode L. Repeats H and L every 5 Vertical section at killer mode.
10	×3		© ************************************	3.58MHz crystal pin for chroma VCO.

CXA1213AS

No.	Symbol	Voltage	Equivalent circuit	Description
11	S/S̄	-	13 24K 8K 777 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SECAM/SECAM input pin. Input high voltage over 2.7V at SECAM and low voltage under 0.3V at SECAM.
12	N/P		(3) Me -1	NTSC/PAL input pin. Input low voltage under 0.3V at PAL and high voltage over 3.0V at NTSC.
13	60/50	At 50Hz: 0V At 60Hz: 4V	13	Discrimination output pin of vertical frequencies 50Hz and 60Hz. Also input pin applicable: Forced 60Hz mode at $V_{\rm CC}$, Forced 50Hz mode at GND.
14.	V _{IN}		147 147 147 147 147 147 147 147	Input pin for vertical sync separation. Slice level is decided by internal constant current of $40\mu A$ and protection resistance R_P and external resistance. Video signal is input at $2Vp$ -p.
15	VPH	3.35V	13 75 K 75	Pin to detect slice level to take out V.sync peak of sync separation output is detected at this pin. Connect Capacitor or Capacitor and Resistance between GNDs for external fixing.

No.	Symbol	Voltage	Equivalent circuit	Description
16	VRAMP		® \$350 18 \$350 18 \$147 147	Generates saw tooth wave for vertical deflection. Use the external capacitance which holds a stable temperature characteristics.
17	VNF	_	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Feedback pin for vertical deflection. This is compared to saw tooth wave generated at Pin 16 with comparator and obtains almost the same waveform as internal saw tooth wave.
18	VD		19 S S S A A A A A A A A A A A A A A A A	Pin which outputs the difference of comparison between feedback waveform at Pin 17 and internal saw tooth wave.
19	V _{CC3}	9V		Power supply pin for vertical drive circuit. This supplies a stable 9V voltage.
20	BG		20K 20K 20K 20K 20K 147 ₹7.5K ₹10K	Burst gate pulse is output. Artificial H.sync is supplied instead of H.sync when AFC is not locked like at no signal, and it outputs approx. 4μ s width pulse.
21	REF	-	22 M.M. T. J. M.M. T. 147	Pins 21 and 22 are the pins to detect over voltage and to make it hold down. This sup-
22	HV	-		plies reference voltage to Pin 21 and high voltage detection output to Pin 22.
23	GND2	0V		GND pin for Jungle.
24	IS	2.1V	W 15 W 147	Pin to generate the reference current to be used at internal IC. Use the external resistance at $27k\Omega$ which holds a stable temperature characteristics since the reference current is 80μ A.

CXA1213AS

No.	Symbol	Voitage	Equivalent circuit	Description
25	V _{CC2}	9V	Spiritual Strain Company of the Comp	Power supply pin for horizontal drive circuit. Shunt regulator provided inside and it regulates to 9V. Since the current flowed into is approx. 15mA the Rg value is obtained by the following formula when +B is +115V. $Rg = \frac{(115-9)V}{15mA} = 7.07 \rightarrow 6.8k\Omega$
26	НР	4.3V	10715K → 10	FBP input pin and inputs it via capacitor.
27	HD		₩r.2 ₩	Horizontal drive output pin and open collector output. Drive pulse width is $24\mu s$ constant.
28	GND3	ov		Horizontal drive GND pin.
29	vco			Connect ceramic oscillator for $32f_{\rm H}$ VCO and dumping resistance. CSB500F2 for ceramic oscillator and 470Ω for dumping resistance are recommended.
30	AFC	5.2V	9 47K	Pin that connects AFC loop filter.

CXA1213AS

No.	Symbol	Voltage	Equivalent circuit	Description
31	H _{IN}	2.3V	147 147 W H 1-25,4A	Input pin for H.sync separator. The form of circuit is the same as V.sync separator, however, set the slice level lower and time constant shorter than V.sync Separator when H. sync separator.
32	Sync		(3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Outputs sync pulled out in H.sync Separator circuit.
33	C BLK		3 150 WE 1	C BLK output pin and BLK signal input pin. BLK input is ON: over 2.5V at H. OFF: under 0.3V at L. Input in emitter follower circuit at input pin.
34	B CLP	6.2V	**************************************	External Capacitor pin for B-Y signal color clamp. Also B-Y signal input pin of SECAM.
35	R CLP	6.2V		External Capacitor pin for R-Y signal color clamp. Also R-Y signal input pin of SECAM.

CXA1213AS

No.	Symbol	Voltage	Equivalent circuit	Description
36	G CLP	6.2V	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	External Capacitor pin for G-Y signal color clamp.
37	B _{out}		₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	B signal output pin.
38	G _{out}		₩ ¥ 150 ₩ 24K ₩ 777 777	G signal output pin.
39	R _{out}		₩ 1 50 ₩ 3 150 ₩ 3 150	R signal output pin.
40	D. PIC	4V	147	External Resistance and Capacitor pin for black peak hold of New Dynamic Picture. Connect this pin to GND at $10 \mathrm{k}\Omega$ when you want New Dynamic Picture OFF.

٦	Г	7	7	1	n	7	٠.	n	O
	-	1	1	-	U	1	-	U	3

No.	Symbol	Voltage	Equivalent circuit	Description
41	BRT	_		Bright control voltage input pin. It is applicable for interface to auto white balance IC when BRT pin is to be \mathbf{V}_{CC} .
42	HUE	4.5V	**************************************	HUE control voltage input pin for NTSC.
43	COL	_	147 1K	Color control voltage input pin.
44	PIC	. –	**************************************	Picture control voltage input pin.
45	SHARP	3.2V	** \$ \$8K	Sharpness control voltage input pin. The sharpness circuit in IC dose not go through when this pin is connected to V_{cc} .

CXA1213AS

No.	Symbol	Voitage	Equivalent circuit	Description
46	V _{IN}	6.4V	@ ####################################	Y signal input pin. 1Vp-p input.(Typ.)
47	V _{cc1}			V _{cc} pin (Y/C system)
48	GND1	ov		GND pin (Y/C system)

CXA1213AS

<u> </u>	lectrical Characteristics	racteri	stic	Ň															(Ta=2!	(Ta = 25°C V_{cc} = 9V See Electrical Characteristics Test Circuit)	eristic	s Tes	Cig	£
	Г		L		S	\ <u>×</u>	PLO	SW conditions	2			Bia	8 00	Bias conditions (V)	ions	3	트	Input C	Test	Details of measurement	_:_ ⊑ .⊑	Typ	Max.	ž
è	Item	Symbol	2	6	4	z,	9	7	80	101 102 E1	102	E1	E2	E2 E3 E4	E	E 2	COLL	E5 conditions	point		-			T
	Current con-	IV _{CC1}	60	6	æ	60	.00	-	.0			20	6	2		0		SIG1	P1	ion at A1	24	33	57	E A
2		VBBC								8									<u> </u>	Input SIG2 to Input A. Test DC at Pin 37	1.6	1.8	2.0	
6	BRT MAX black level	Vвемах																	Pin 37	Piri 37 waveform	3.4	3.6	3.8	>
4		VBBMIN		Ü															2	Van av va	0	0.45	0.75	
ည	DC (B) PIC Center (B)	VaPc	+==	10	+==		+=		+==	1	1			_			 			Input SIG3 to Input A. Test DC value at Pin 37 on 3 SW conditions. The formula V. Vanc is applied for the Specifi	1.8	21	2.3	
9	PIC MAX (B)	Vврмах	т :	<u></u>	1		_م_										<u> </u>		Pin 37		2.55	2.85	3.1	>
7	PIC MIN (B)	Vврмін					<u>.</u>													3	0.25	0.5	0.75	
1 00	COLOR 8 CONTROL Center	Vccso					- 6				NO N					-,				Input SIG4 to Input B. Test DC value at Pin 37 on 35W conditions.	0.6	60	1.2	>
! 01	9 MAX	V _{СХВО}				م	70												Pin 37	Pin 37 Specifications V _{CCBO} , CxBO, and V _{CNBO}	1.4	5.0	2.6	
	10 MIN	VCNBO	.			- 3	υ υ													5	0	50	100	E .

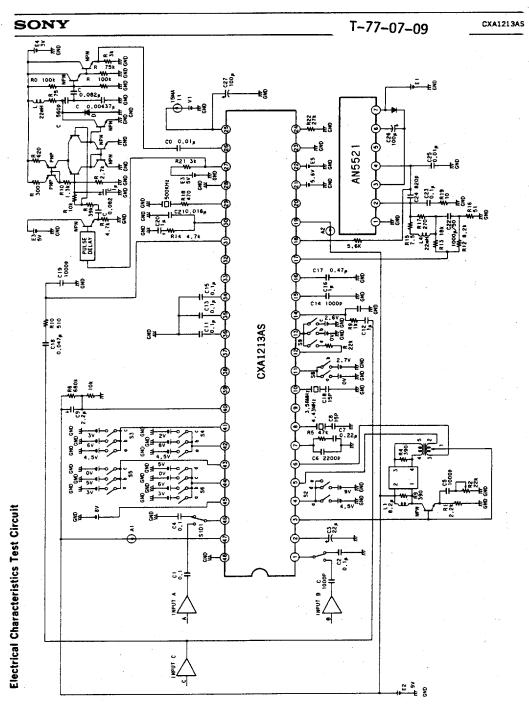
SONY	. A	T	77-07-09	CXA1213AS
Ge Constitution			8	7

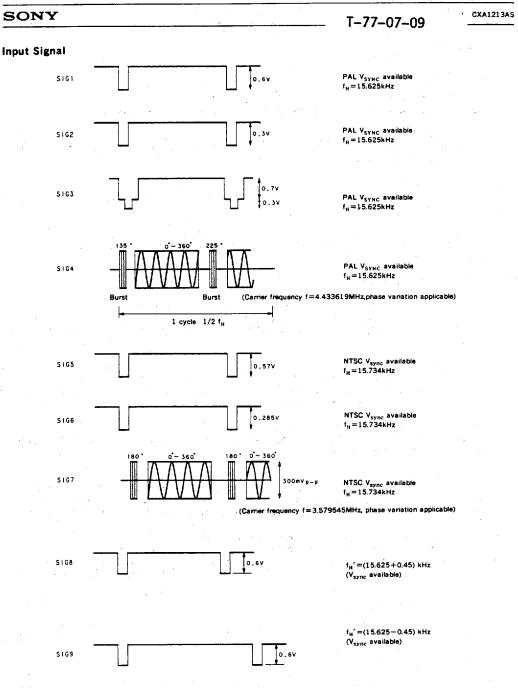
1	<u> </u>		Sep						88	
Man. Hair		17	88	242	0.57		0.33		-28	
<u>2</u>	<u>.</u>	4	06	235	0.5		0.28			
Ä	É	-10	82	228	0.43		0.24			
Dataile of measurement	Details of Higasoffilem	Input the signal as shown in Diagram 1 to Input B. R.G.and B outputs V _x are taken as V _R ·V _C ·and V _B respectively. At this time vary input signal from 0 to 360° and test maximum value 0 to	V _{GMAX} , and V _{BMAX} of V _{BV} V _{G,a} nd V _B . Phase angles of each output at maximum value are taken as ϕ_{BF} , ϕ_{RF} , and ϕ_{CF} respectively.(Get maximum value	at each output, J xt this time the lollow- pin 37 ing formulas are applied. Pin 38 $\Phi_{RF} = \phi_{RF}$, $\phi_{RF} = \phi_{RF}$, $\Phi_{CF} = \phi_{CF}$, $\Phi_{CF} = \phi_{CF}$,	And also, $(R/B)P = V_{RMAX}/V_{BMAX},$ $(G/B)P = V_{CMAX}/V_{BMAX}.$	(*Signal variable form 0' to 360' to phase of burst signal.)	Diagram 1 Input signal	Diagram 2 RGB aach output signal	Attennate SIG4 less then 300mVpp and test amplitude of SIG4 when color killer operates. the following formula is applied for D _{K1LL} when the value the is	taken as V_x . 20 $\log \frac{V_x}{300}$
Test	point	. •		Pin 37 Pin 38 Pin 39	1				Pin 37	
Bias conditions (V) Input C	8 101 102 E1 E2 E3 E4 E5 conditions								-	-
5	E5 c									
us (4									
ditio	9					··				
00	2									
Sias	-									
-	2 E		,							
ļ	뒤									
}	의									
ous	7									
diti	9						-			
SW conditions	2	a a								
જ	4									
-	6									
ŀ	7									
	\rightarrow			· · · · · · · · · · · · · · · · · · ·	Q.		۵.		. 0	
Svmbol		-0- BB	ф.	ф	(R/B)P		(G/B)P		Dkill.t.	
ten.		Detection 11 axis at PAL (B axis)	Detection 12 axis at PAL (R axis)	Detection 13 axis at PAL (G axis)	Gain ratio (R/B)		15 Gain ratio (G/B)		16 KILLER POINT	
ž		11	12	13	14		15		16	

SONY T-77-07-09 CXA1213AS

Unit		ZH HZ			deg				<u> </u>	deg
Мах	210		-870 -550	20	105	246	0.84	0.34	8	
Typ.	0	420	-870	11	66	240	0.77	0.3	-18.5	30
Min	-220	240		0	93	234	0.72	0.26		18
Details of measurement	Since APC circuit does not operate when Pin 4 is connected to 9V, the carrier frequency of SIG4 is varied and -220 the frequency FP when the demodulation waveform occurs at Pin 37 is to be	free run frequency. Then formula $\Delta F_P = F_P - 44.336.19Hz$ applies. The APC circuit operates when Pin 4 is opened and vary the subcarrier frequency as the killer circuit is operating. The frequency when demodiation.	waveform occurs at Pin37 is to be pull:in range frequency. Then the following formulas are applied. $\Delta F_{Cup} = (t_x - F_p) \text{ (when } t_x \text{ is } t_x > F_p).$ $\Delta F_{Cop} = (t_x - F_p) \text{ (when } t_x \text{ is } t_x < F_p).$	The contents of test are the same as the Items 10 to 15,however,the signal input to Input 8 is as diagram below.	•	7	(*Signal variable from 0' to 360' to phase of burst signal.)		The contents of test are the same as the Items 10 to 15. Input signal is shown in the right diagram.	(Sub carrier frequency
Test		Pin 37				Pin 37 Pin 38 Pin 39			Pin 37	Pin 39
101 102 E1 E2 E3 E4 E5 conditions			<u> </u>				SIG5			
5 5										
E4										9.0
먑				-				-		0.0
<u>0</u> 2				·				-		5
E Bas		· · · · · · · · · · · · · · · · · · ·							S	3
02		NO.							No.	
01										L
-									æ	
SW conditions 5 6 7 8									60	
9		······································							e ·	
≱ ω Σ									60	
4									٩	٥
3									0	
2	P	Φ.	0						. 00	
Symbol	ΔFp	ΔF _{CPU}	ΔF _{cno}	ě e	e Z	e e	(R/B) N	(G/B) N	Фвимах	B NMIN
Item	17 4.43 f _o	18 (+)	c	Detection 20 axis at NTSC (B axis)	Detection 21 axis at NTSC (R axis)	Detection 22 axis at NTSC (G axis)	23 Gain ratio (G/B)	24 Gain ratio (G/B)	25 HUE charac OBNMAX a	26 HUE charac Permin
Š										

E1 E2 E3 E4 E5 conditions point. The contents of test are the same as
The contents of test are the same
the same as Items 17 to 19.
F _N : Free run frequency $\Delta F_{\text{cup}_1} = I_x - F_N H_Z$
(When Ix is $Tx > F_{K}$) $\Delta F_{DOI} = f_{K} - F_{N} H_{Z}$ (When fx is $Tx < F_{N}$)
SIG1 Pin 25 Test voltage at Pin 25 when current 15mA is flowed into Pin 25.
A ₂ Test the current flows into Pin 19
Test the voltages V _{H1} ,V _{H1} ,and V _{L1} at Pin 17 atter 9.5fH',160,5fH',and 311. 5fH' from V _{SYNC} pulse rising.
Pin 17 V. sync pulse
Mavelom Wavelom GNO level
Test each level/V _{SSH} and V _{SSL} ,and pulse width t _{SIS} from GND of Pin 32 output.
Pin 32
Pin 32 output


T-77-07-09


SONY

			_			Ø	SW conditions	ğ	₹	S			_	Bias	8	퍨	ions	Š	Bias conditions (V) Input C	ت ا	Test			Γ		L
item (S)	ຄ_	Symbol	2	\vdash	3 4	4	2	9	~	⊢	8 101 102	Ë		=	E2	E3	72	1	E2 E3 E4 E5 conditions	ditions	point	Details of measurement	Ξ̈́	Typ.	Max	Unit
BG OUT level (H)		Vвся						-		 		 	-	<u> </u>	<u> </u>							Test each level, V _{BCL} , V _{BCH} , and pulse width t _{BC1} from GND of Pin 20 output.	2.7	3.3	4.1	
BG OUT level (L)		VBGL	· · · · · · · · · · · · · · · · · · ·																		Pin 20		0	0.01	0.1	>
BG OUT pulse width		t BG1	· 1																			Mare 1.5v Pin 20 output	2.9	3.4	3.9	Sπ
HBLK level (H)		Vнвсн																				V pulse	1.8	2.2	2.6	:
42 HBLK level (L)		VHBLL											······································										0	0.05	0.1	>
43 Herk pulse width		t _{HBLK}										÷											10.8	11.7	12.5	Sπ
V _{BLK} level (H)		Уувсн					 															lest each level from GND of Pin33 output waveform and pulse width Input SIG1 or SIG5 to Input C when to and t are tested.	4.2	8.4	4.3	>
45 V _{nt.k} pulse width 1		tvBLK1				-														-			1.70	1.76	1.80	
46 V _{BLK} pulse width 2		tvB1K2									-								ν̄	SIG5		*	1.40	1.44	1.50	ž.
47 BG OUT		t BCD	T																σ	SIG1		Pin 20 output waveform that tests the time difference tags at this point. Test the time difference tags at this point mount. I set the time difference tags at this point.	0.4	0.7	=	μS
HOLD DOWN operating	_1	Vногы													-			*			'.	* Raise the voltage of E5 from 5.6V subsequently and test offset voltage from 5.6V of E5 when HD pulse of Pin 27 stops.	0	45	99	Ì.

T-77-07-09

		MS	SW	SW		ı٥	Pe	SW conditions	2			Bias	8	i i	S	()	Bias conditions (V) Input C Test	- -					L
1 2 3 4 5 6 7 8 101 102 E1 E2 E3 E4 E5 conditions point		2 3 4 5 6 7 8 101 10	3 4 5 6 7 8 101 10	4 5 6 7 8 101 10	5 6 7 8 101 10	6 7 8 101 10	7 8 101 10	8 101 10	101	2	ব	13	12	E3	4	5 condit	ions poir	. 	Details of measurement N	Z.	Typ.	Min. Typ. Max.	š
													9			SIG8		37 a	Confirm the output waveform Pin 37 agrees with $t_n = 16.075$ kHz and $t_n = 16.075$ kHz a			16.075	
Horizontal a a a a a a a a a a a a a a a a a a	0 0	2 2 2 2	70 70	70 70	70 70	7G	70					?; ?:	0.6 0.6	ი	m	6518	1	C = 0	Input C input to Input C. This range is to be pull-in range.	15.175			K H Z
Vertical Fv1 b range 1		٥	a	٩	۵	Ф	·											E = 0 *	h varies V rom asyn- 12.	42.1	50	72.6	
		I		I	T	T										SIG1	_	37	Pin 37 (Compulsion 50Hz mode)		-		÷
																		ກ ກ <u>≃</u>	Input C Pull in frequency range which varies V frequency and synchronizes from asyn				!
52 pull-in F _{v2}		0	O	0	o	0				_		_	_		_			U	chronism 4	48.6	9	72.6	
range 2													_					*	* However, let fu=15.625kHz				
						-						1		_	_	_			(Compulsion 60Hz mode)				

CXA1213A5

Operation Description

(1) Luminance signal system

(i) SHP circuit

The luminance signal that is input from Pin 46 is emphasized around 3.0 MHz of luminance signal by SHP circuit. Connect Pin 45 to V_{cc} so that SHP circuit gets OFF when it is not necessary.

(ii) BLK MUTE circuit

Connecting Pin 41 to V_{CC} replaces BLK section to black level and connection with auto white balance IC (CXA1024S) applicable.

(iii) Fast BLK circuit

Inputting the character signal etc. to CBLK pin makes the function that attenuates the character signal part of video signals available.

(iv) New Dynamic Picture circuit

The function to expand black operates in the signals under 50IRE of input signal. Connecting Pin 40 at around $10k\Omega$ resistance makes the function cancelled.

(2) Chroma system

(i) ACC circuit

Detects the burst signal (that is demodulated by average level detection) by ACC DET and applies return to ACC amplifier according to the detection output to keep the demodulated burst level always stable.

(ii) APC circuit

The input chroma component from Pin 1 composes B-Y signal and R-Y signal by detecting to the external crystal at Pin 8 (3.58MHz) or Pin 10 (4.43MHz), which are output of VCO by APC circuit, after it is amplified via ACC and color amplifiers.

(iii) Matrix

Composes G-Y signal by mixing B-Y and R-Y signals. Then, outputs at R,G, and B original signal by these signals and the luminance signal Y.

(iv) ID correction

PAL system is sent after R-Y (V) component of the sygnal gets inverted every 1H. Due to this reason, the demodulation axis also needs to be inverted every 1H. The R-Y axis is inverted every 1H synchronizing with HP in this IC, however, the flip-flop corrects it if it is wrong according to R-Y burst detection output.

(v) SECAM system applicable (Combined with the CXA1214P)

The combination with the CXA1214P enables the SECAM signal demodulated. (See Application Circuit 2) Inputting the direct voltage of H level (over 2.5V) and R-Y and B-Y signals, which SECAM signal is demodulated to R CLP (Pin 35) and B CLP (Pin 34) via direct capacitor make the original signals R,G, and B output.

T-77-07-09

CXA1213AS

(3) Jungle system

The count down system is adopted, by the 32f_H ceramic oscillator.

Due to these reason, no adjustment of H and V free run frequency is realized and the number of pins and external parts get lesser.

The horizontal synchronization cicuit adopts double loops. The input, VCO frequency and phase are combined and the HD pulse is generated in the first loop and the phase with FBP of deflection is combined in the second loop.

The burst gate pulse is generated synchronizing with the input horizontal sync, however this generates a artifical pulse at no signal with a artifical horizontal sync from the horizontal count down circuit.

The vertical synchronization circuit varies the width of input prohibition gate according to input frequency and shortens the section that vertical sync passes through to improve the elimination capacity of the noises going into vertical sync. (See Diagram of (i) Vertical Synchronization Prohibition Gate)

At the same time, the elminated capacity of the noises are furthermore improved since the peak hold circuit is adopted at vertical sync separation circuit.

The auto discrimination circuit is built in when Switching 50 or 60Hz.

(i) Vertical synchronization prohibition gate

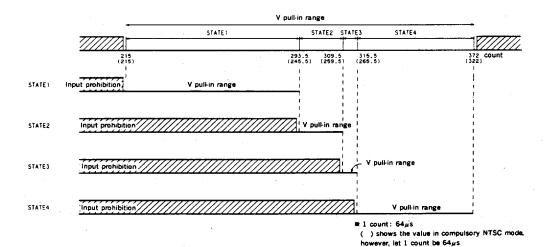
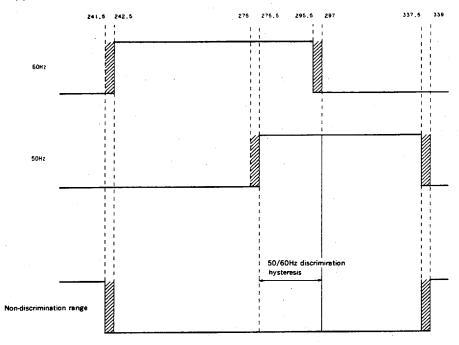



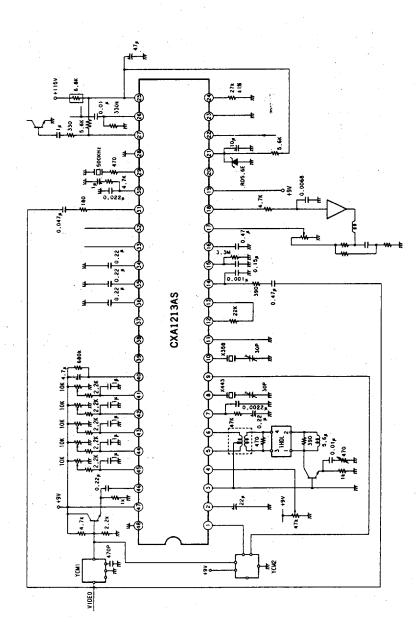
Diagram 1. Vertical pull-in range

This is synchronized in state 1 to 4 by vertical sync wavelength. The vertical pull-in range is composed as Diagram 1. Through this, the noise is eliminated as providing the input prohibition gate severely not to discriminate the non-continuous noise pulse besides vertical sync. (ex. VHS noise).

SONY T-77-07-09

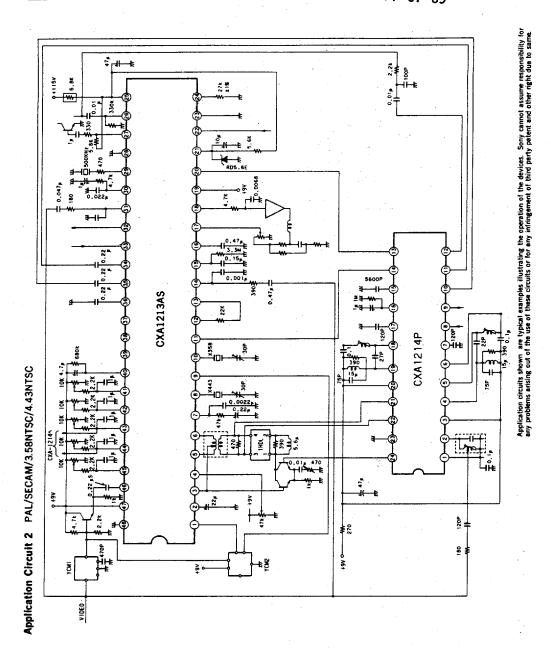
(ii) 50/60Hz Discrimination Operation

The count number is $64\mu s$ by a count (=1/f_H)


Diagram 2. 50/60Hz Discrimination Range

This IC automatically discriminates the discrimination of 50Hz and 60Hz from the input vertical sync. The 50Hz has priority when the power supply is on and discriminates as in Diagram 2 by vertical sync wavelength. The discrimination output pin is Pin 13 ,and outputs as 60Hz mode H and 50Hz mode L.

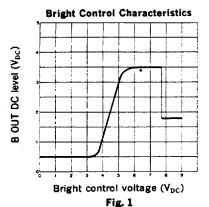
For example, this discriminates as 60Hz mode when the input signal is from 242.5 to 295.5 counts and 50Hz mode when the input signal is from 275.5 to 337.5 counts. And the hysteresis is provided between the count from 275.5 to 295.5. No discrimination occurs besides those so that the discrimination output of former state is held.

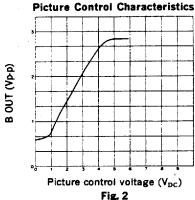

The mark 7777, which is a discrimination error occurs due to like an error of vertical sync separation circuit in this IC, is a state that discriminates as either 50Hz or 60Hz.

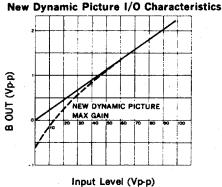
Application Circuit 1 PAL/3.58NTSC/4.43NTSC System

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

T-77-07-09 CXA1213AS




- 48 -



CXA1213AS

Color Control Characteristics

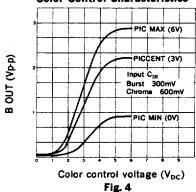
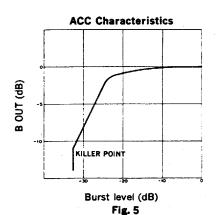



Fig. 3

Y. Signal Frequency Characteristics

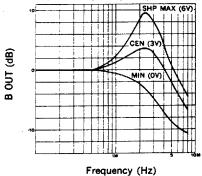
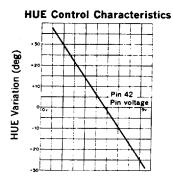



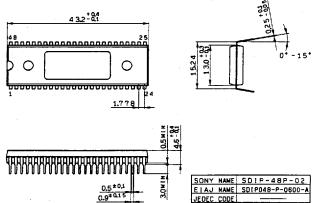
Fig. 6

T-77-07-09

CXA1213AS

Pin voltage at pin 42

Fig. 7


Notes or Operation

- Recommend adjusting the free run frequency to 4.433619MHz and 3.579545MHz by using the trimmer capacitor.
- (2) The HUE characteristics 1 and 2 are tested at HUE pin voltage 8V and 2V. The HUE center is about 6.0V.
- (3) Adjust the detection axis of PAL mode B output to Odeg by contorolling Pin 4 (PHASE).
- (4) Input the signal to Pin 33 in the emitter follower type when the high speed blanking function uned.

Package Outline

Unit: mm

48pin SDIP (Plastic) 600mil 5.1g

