5 E M 查询 53102供应商

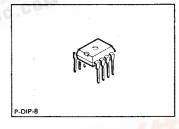
捷多邦,专业PCB打样工厂 ,24小时加急出货

TLE 3101 TLE 3102 TLE 3103 TLE 3104

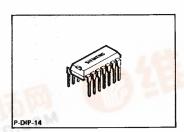
Bipolar IC

Features

- Direct supply from ac line possible
- Low power consumption, typically 2.4 mA
- Only one capacitor for trigger pulse width and phase angle
- Highly stabilized reference voltage
- Negative triac gate trigger current, 100 mA max.
- No triac drive pulses during supply undervoltage
- Optional voltage or current synchronization
- TLE 3101 with independent on-chip op amp OP and comparator K3


The following versions were produced from that basic IC:

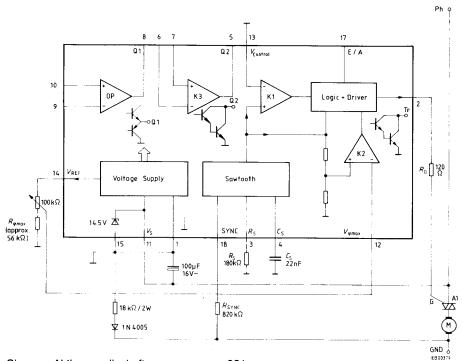
- TLE 3102 without comparator K3
- TLE 3103 without op amp
- TLE 3104 without K3, enable input E/A, control input V_{control}, and without Z diode output


Туре	Ordering Code	Package
ETTLE 3101	Q67000-A2337	P-DIP-18
■ § TLE 3102	Q67000-A2338	P-DIP-14
■ 5 TLE 3103	Q67000-A2339	P-DIP-14
對 TLE 3104	Q67000-A2312	P-DIP-8

Not for new design

These simplified versions are provided for less complex low-cost applications.

These bipolar phase control ICs require, for most applications, only a minimum number of external components. Typical applications are motor control, brightness control, temperature control, cos φ optimization for squirrel-cage motors, and starting current limitation.

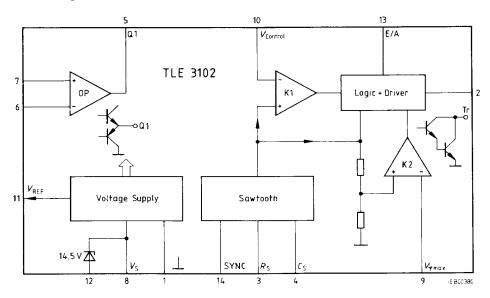

Thanks to their high efficiency, the TLE 310 x ICs are particularly suitable for consumer goods, such as kitchen appliances and washing machines, vacuum cleaners, electric irons and hobbyist appliances.

special feature is the soft start which requires only straightforward wiring, and is e.g. used in portable drills for center punching.

Pin Definitions and Functions for TLE 3101

Pin	Pin Function		Function
1	Ground	10	+input op amp
2	Triac trigger output	11	V _S
3	R _s C _s	12 13 14	V _{φmax} V _{control} , K1 V _{REF}
5	Output Q2, K3	15	Z diode
6 7	-input K3 +input K3	16	N.C.
8	Output Q1, op amp	17 18	Enable input E/A Synchronization input (SYNC)
9	-input op amp	-	

Block Diagram with External Components for Motor Control

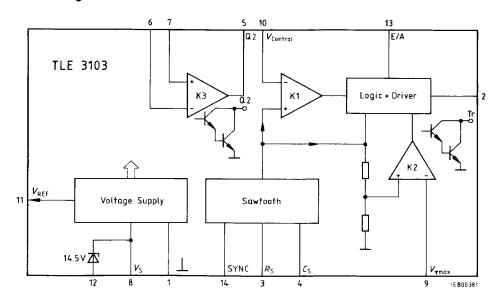


The **TLE 3102** with on-chip op amp for external use is particularly suitable as a speed controller with P, PI, or PID characteristic; the op amp serves as adjustable gain amplifier. An acutal value which is proportional to speed can be formed by rectification of the tacho amplitude.

Pin Definitions and Functions for TLE 3102

Pin	Function	Pin	Function
1	Ground	8	V _S
2	Triac trigger output	9 10	V _{φ max} V _{control} , K1
3	R _S	11	V _{REF}
4	Cs	12	Z diode
5	Output Q1, op amp	13	Enable input E/A
6 7	input op ampinput op amp	14	Synchronization input (SYNC)

Block Diagram

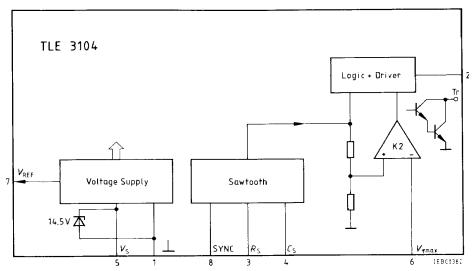


The **TLE 3103** with on-chip comparator for external use is particularly suitable for phase control systems in which special functions, such as blocking protection or overtemperature protection, are required.

Pin Definitions and Functions for TLE 3103

Pin	Function	Pin	Function
1	Ground	8	V _s
2	Triac trigger output	9 10	$V_{\phi_{max}}$ $V_{control}$, K1
3	Rs	11	V _{REF}
4	Cs	12	Z diode
5	Output Q2, K3	13	Enable input E/A
6 7	-Input K3 +Input K3	14	Synchronization input (SYNC)

Block Diagram



The **TLE 3104** ist particularly suitable for simple, low-cost phase control and motor control systems, in which the actual value is formed by rectification of the tacho amplitude.

Pin Definitions and Functions for TLE 3104

Pin	Function	Pin	Function
1	Ground	5	V _s
2	Triac trigger output	6	$V_{\phi_{max}}$
3	Rs	7	V_{REF}
4	Cs	8	Synchronization input (SYNC)

Block Diagram

TLE 3101 TLE 3102 TLE 3103 TLE 3104

Functional Description

The following is a description of the individual functional units (refer to block diagram) and their interactions:

Operational Amplifier op amp

Two inputs and the output are available. The op amp is internally compensated and has a push-pull output. Should the op amp not be required, the +input must be connected to ground (the TLE 3101 and TLE 3102 then consume minimum current).

Comparator K 3

Comparator K3 is not frequency-compensated. The output is an open NPN collector which in switching operation may drive an LED, for example. Should the comparator not be required, the —input must be connected to ground. K3 then has minimum current consumption.

Reference Voltage Source

A temperature-stabilized voltage source is available for control and regulating circuits.

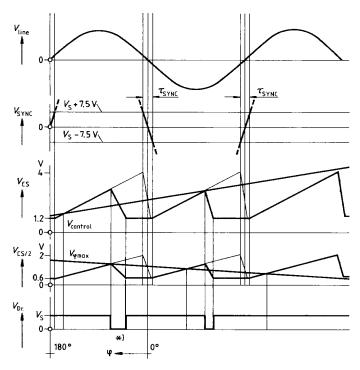
Sawtooth Generator

In this unit, a sawtooth synchronized to the line is generated by the external $R_{\rm S}$ and $C_{\rm S}$. The phase angle of the triac is determined by comparison of the sawtooth voltage and the control voltage. The trigger pulse width for the driver is provided by the falling edge of the sawtooth generator. The charge of $C_{\rm S}$ determines the trigger pulse width. A special circuit ensures the release of only one trigger pulse per line half period.

Comparators K1, K2

Sawtooth voltage and control voltage are compared by means of comparators K1 and K2. Comparator K2 receives only half the sawtooth voltage. The phase angle limit can be adjusted within the complete phase angle range by applying a reduced reference voltage to input " $V_{\phi_{max}}$ ". Comparator K2 provides starting current limitation and/or phase angle limitation for inductive loads. Both comparator outputs are fed to the logic and driver unit.

The comparator with the smaller conduction angle is the dominating one. With $V\phi_{max}$ dominating, the trigger pulse width is doubled – compared with the trigger pulse width in case of a dominating $V_{control}$.


Logic + Driver

The logic and driver unit for triac triggering is controlled by comparators K1, K2, and the enable input E/A. The E/A input is TTL-compatible and may disable or enable the trigger pulse. Logic +driver obtain information on the trigger pulse width from the sawtooth. The undervoltage monitoring enables the driver output only if the IC's supply voltage has reached the permissible minimum value. The driver output to the triac supplies negative pulses.

Synchronization

At the sync input, the phase angle is synchronized to the zero crossing point of the line voltage. The sync pulse width τ_{SYNC} has to be twice as large as the trigger pulse width.

Pulse Diagram

Conduction angle (with resistive load)

*) With $\textit{V}_{\phi_{max}}$ dominating, the trigger pulse width is doubled.

Absolute Maximum Ratings

 $T_{\rm A} = -25 \text{ to } 85 \,^{\circ}\text{C}$

		Lim		
Parameter	Symbol	min.	max.	Unit
Supply voltage	V _s	-0.3	33	V
Inputs op amp K3	V _i	-0.3	33	V
Output op amp Output K3 (disabled)	V _{Q1} I _{Q1} V _{Q2}	-0,3 -5 -0.3	V _S 3 33	V mA V
(enabled) Output V _{REF}	I _{Q2} V _{REF}	0 -0.3	40 5	mA V
Z diode Input SYNC	$I_{Z} \ I_{SYNC}$	-35 -10	35 10	mA mA
Input $R_{\rm S}$ Input $C_{\rm S}$ Input $V_{\rm control}$ Input $V_{\rm max}$ Enable input E/A	V _{RS} V _{CS} V _{control} Vφ _{max} V _{E/A}	-0.3 -0.3 -0.3 -0.3 -0.3	5 5 V _S V _S 33	V V V V
Output driver (disabled) (enabled)	$V_{ m Q\ dr} \ I_{ m Q\ dr}$	-0.3 0	33 120	V mA
Total power dissipation (time integral)	P _{tot}		700	mW
Junction temperature Storage temperature	T _j T _{stg}	-55	150 125	°C °C
Thermal resistance system – air P-DIP- 8 – TLE 3104 P-DIP-14 – TLE 3102, TLE 3103 P-DIP-18 TLE 3101	R _{th SA} R _{th SA} R _{th SA}		100 70 70	K/W K/W

Operating Range

Supply voltage	V _s	10	30	V
Ambient temperature	TA	-25	85	°C
Input SYNC	I _{SYNC}	-3.5	3.5	mA

Characteristics

 $V_{\rm S} = 10$ to 30 V, $T_{\rm V} = -25$ to 85 °C

		Limit Values				Test
Parameter	Symbol	min.	typ.	max.	Unit	Conditions
Current Consumption without output load at op amp, K3, driver, V _{REF} , without	t		2.4	3.2	mA	V -145V
R _{SYNC} current	Is	1.0			V	$V_{\rm S} = 14.5 \text{ V}$
Reference voltage	V _{REF}	1.8	2.0	2.2	-	
Load current	$-I_{L}$	0		3	mA	
Stability $V_{\rm S} = 10$ to 30 V $I_{\rm REF} = 0$ to 3 mA	∆V _{REF} ∆V _{REF}			10 20	mV mV	
Temperature coefficient	$\Delta V_{REF}/\Delta T$	-0.5		0.5	mV/K	
Operational Amplifier op amp	•					
Open-loop voltage gain Input offset voltage Input current Common-mode input	G _{V0} V _{IO} -I _I	60 -10	90	10 2	dB mV μA	
voltage range Output current Transition frequency Transition phase Output voltage	$egin{array}{c} V_{\mathrm{IC}} & I_{\mathrm{Q1}} & & & & & & & & & & & & & & & & & & $	0 -3	2 120	V _S -3 1.5 V _S -3	V mA MHz deg. V	
Comparator K3	1 31		_			
Input current Input offset voltage Output enabled disabled Common-mode input	-I ₁ V _{IO} V _{Q2} I _{Q2}	-20	1.0	2 20 1.5 5	μΑ mV V μΑ	$I_{\rm Q2} = 20 \text{ m/s}$ $V_{\rm Q2} = 30 \text{ V}$
voltage range	V _{IC}	0		V _S −3	V	
Input K1 (V _{control})	T .			1.0		
Input current Control range: Conduction angle = 0° (dependent on $R_{\rm S}$ and $C_{\rm S}$) Conduction angle = 175° Max. perm. conduction angle	$-I_{\mathbb{S}}$		1.2	SYNC pulse end -5	μΑ V V deg.	
Input K2 (Vφ _{max})						
Input current Control range: Conduction angle = 0° (dependent on $R_{\rm S}$ and $C_{\rm S}$) Conduction angle = 175° Max. perm. conduction angle	-I _S		2 0.6	2 SYNC pulse	μA V V deg.	

TLE 3101 TLE 3102 TLE 3103 TLE 3104

Characteristics

 $V_{\rm S} = 10$ V to 30 V, $T_{\rm A} = -25$ to 85 °C

Parameter		Limit Values				Test
	Symbol	min.	typ.	max.	Unit	Conditions
Z Diode						
Z voltage	V _z	13	14.5	16	V	$I_Z = 5 \text{ mA}$

Enable Input E/A

Input current	$-I_{\scriptscriptstyle \parallel}$		2	μΑ	
H input voltage for driver output, active	V _{iH}	2.8		v	
L driver output disabled	V _{IL}		0.8	٧	

Triac Trigger Output

Output, enabled	ν _L	1.4	2	2.5	V	$I_{\rm Q} = 10 {\rm mA}$
		1.4	2	2.5	V	20 mA
		1.4	2	3.0	V	50 mA
		1.4	4	6.0	V	100 mA
Output, disabled	I_{Q}			10	μΑ	$V_{\rm Q} = 30 \text{ V}$

Input SYNC

Switching current Switching threshold Output disconnection at	I _{SYNC} V _{SYNC}		±20 V _S ±7.5		μΑ V	
V _S undervoltage	V _s	7.5	8	10	٧	

Input R_S, C_S (refer to calculation formulae)

<u> </u>					
Limit value C _S	Cs	5	100	nF	
Limit value R _S	Rs	33		kΩ	

Dimensioning notes and calculation formulae

- 1. Select trigger pulse width according to triac type and load.
- 2. Calculate C_S (for a V_{control} domination)

 C_S (nF) = trigger pulse width (μ s) x 0.2

The formula yields the typical value

e.g. $T = 50 \mu s$ results in $C_S = 10 \text{ nF}$

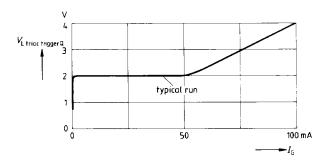
3. Calculate R_S (for 4 V max. sawtooth voltage)

$$R_{\rm S}$$
 (k Ω) = $\frac{1}{\text{trigger pulse width (}\mu{\rm s)}}$ x 2 x 10⁴

The formula yields the typical value

e.g. T = 50 μ s results in R_S = 400 k Ω

4. Select R_{SYNC} resistance at SYNC input


The sync pulse width (from $V_{\rm S}\pm7.5$ V, $I_{\rm SYNC}=\pm$ 20 μ A) has to be twice as large as the trigger pulse width.

- 4.1 Sync pulse width ≥ 2 x trigger pulse width x safety factor (according to component deviation and line voltage variation).
- 4.2 $R_{\rm SYNC}$ (k Ω) = [sync pulse width (μ s) x line voltage (V rms) x 2.23 x 10⁻⁴ 7.5] x 50 e.g. 560 μ s sync pulse width and 220 V rms result in $R_{\rm SYNC}$ = 1 M Ω .

With 220 V rms line voltage, the minimum permissible resistance R_{SYNC} is 100 k Ω corresponding to a pulse width of 195 μs .

5. Calculate R_G

$$R_{\rm G} = rac{V_{
m S} - {
m triac~gate~voltage} - {
m low-voltage~triac~trigger~output}}{I_{
m G}}$$

TLE 3101 TLE 3102 TLE 3103

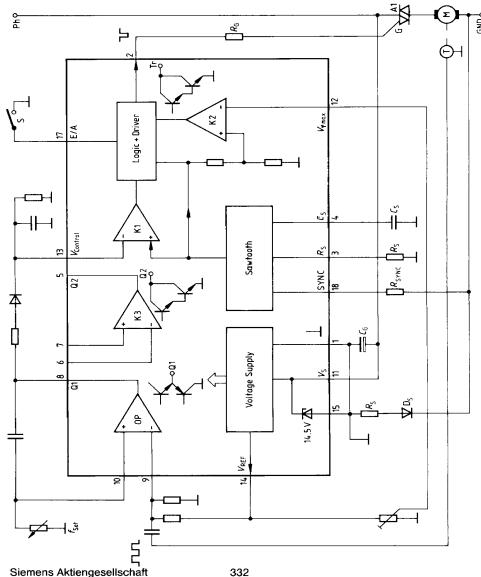
- 6. Calculate R_s
- 6.1 Calculation of R_s requires first of all the determination of the total current consumption. Insert the arithmetic mean values of the currents for one line cycle.
- 6.2 $\bar{I}_{\rm tot}=\bar{I}_{\rm S}=$ 3.2 mA + $\bar{I}(V_{\rm ref})$ + $\bar{I}_{\rm Q1}$ (OP) + $\bar{I}_{\rm Q2}$ (K3) + \bar{I} (driver output) + \bar{I} (additional external circuit currents) + I \bar{I} ($R_{\rm SYNC}$).
- 6.3 $R_{\rm s}$ (k Ω) = $\frac{{\rm rms~line~voltage~(V)}}{I_{\rm tot~(mA)}}$ x 0.455 x safety factor

(corresponding to component deviation and line voltage variation)

e.g. $I_{\rm tot} =$ 5 mA und $V_{\rm line} =$ 220 V result in $R_{\rm s} =$ 20 k Ω .

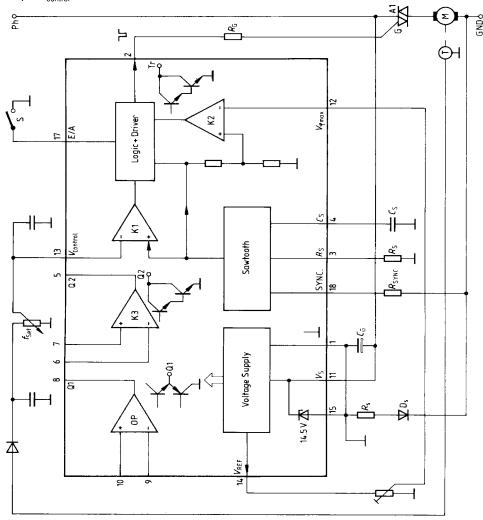
Employing the internal Z diode reduces the IC's V_S voltage to 14.5 V.

- 7. Calculate C_G
- 7.1 Selection of the maximum permissible ripple at the V_S input, based on the desired functional quality and the special external components.
- 7.2 The ripple amplitude at the $V_{\rm S}$ input of the unit should not exceed $V_{\rm DD}=2$ V.

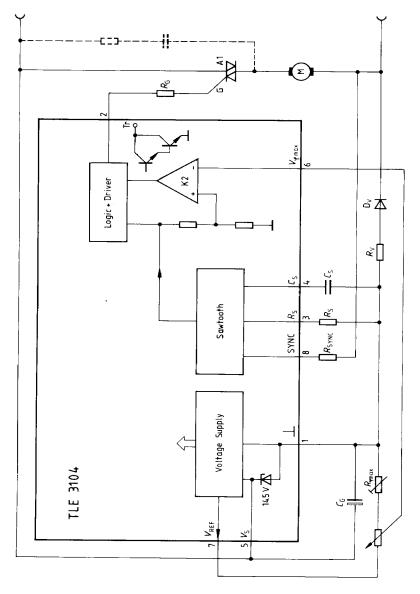

7.3
$$C_G (\mu F) \ge \frac{\overline{I}_{tot} (mA)}{V_{DD}} \times 15$$

e.g. ripple $V_{\rm pp} = 0.75 \, \text{V}$; $\overline{I}_{\rm tot} = 5 \, \text{mA}$ results in $C_{\rm G} = 100 \, \mu\text{F}$

Application Examples

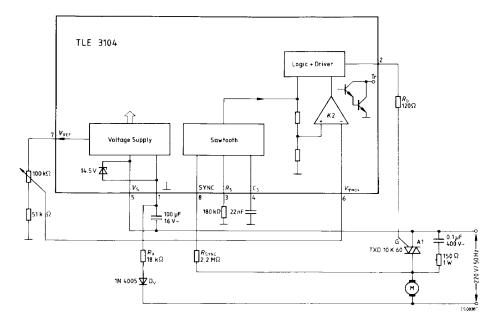

Schematic Circuit Diagram for Motor Control Using TLE 3101

The tachogenerator provides a frequency processed by the op amp (monoflop).



Schematic Circuit Diagram for Motor Control Using TLE 3101

The tachogenerator provides a **voltage** which is rectified and stabilized, and then fed to input $V_{\rm control}$.


Schematic Circuit Diagram for Motor Control Using TLE 3104

Schematic Circuit Diagram for Motor Control Using TLE 3104 The tachogenerator supplies a voltage, which is rectified and stabilized and then fed to input V_{control} . Logic + Driver Sawtooth š SYNC Voltage Supply ≥₹ **TLE 3104** Α. ا رد ا \leq

Current Synchronization in Case of Inductive Load Control Using TLE 3104

Particularly in case of phase control of inductive loads, such as transformers and shaded-pole motors, there is a risk of half-wave operation as a result of the phase shift between voltage and current. In order to avoid this condition, the synchronization resistor is connected to A 2 of the triac (this method cannot be applied in the event of severe brush sparking of the motor).

Notes

The pulse width selected for the trigger pulse must be so great that the triac reaches its holding current, even with a great phase angle (critical: positive half-wave). For this reason, it may be necessary to select a lower value for the ac line series resistor.

The sync pulse must be at least twice as wide as the trigger pulse.