SN65LVCP23 SLLS554B - NOVEMBER 2002 - REVISED JUNE 2003 # 2x2 LVPECL CROSSPOINT SWITCH ### **FEATURES** - High Speed 2x2 LVPECL Crosspoint Switch - LVDS Crosspoint Switch Available in SN65LVCP22 - 50 ps (Typ), of Peak-to-Peak Jitter With PRBS = 2²³-1 Pattern - Output (Channel-to-Channel) Skew Is 10 ps (Typ), 50 ps (Max) - Configurable as 2:1 Mux, 1:2 Demux, Repeater or 1:2 Signal Splitter - Inputs Accept LVDS, LVPECL, and CML Signals - Fast Switch Time of 1.7 ns (Typ) - Fast Propagation Delay of 0.75 ns (Typ) - 16 lead SOIC and TSSOP Packages - Operating Temperature: –40°C to 85°C # **APPLICATIONS** - Gigabit Ethernet Redundant Transmission Paths - Gigabit Interface Converters (GBICs) - Fibre Channel Redundant Transmission Paths - HDTV Video Routing - Base Stations - Protection Switching for Serial Backplanes - Network Switches/Routers - Optical Networking Line Cards/Switches - Clock Distribution ### DESCRIPTION The SN65LVCP23 is a 2x2 LVPECL crosspoint switch. The dual channels incorporate wide common-mode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals. The dual outputs are LVPECL drivers to provide high-speed operation. The SN65LVCP23 provides a single device supporting 2:2 buffering (repeating), 1:2 splitting, 2:1 multiplexing, 2x2 switching, and LVDS/CML to LVPECL level translation on each channel. The flexible operation of the SN65LVCP23 provides a single device to support the redundant serial bus transmission needs (working and protection switching cards) of fault-tolerant switch systems found in optical networking, wireless infrastructure, and data communications systems. TI offers an additional gigibit repeater/ translator in the SN65LVDS101. The SN65LVCP23 uses a fully differential data path to ensure low-noise generation, fast switching times, low pulse width distortion, and low jitter. Output channel-to-channel skew is less than 10 ps (typ) and 50 ps (max) to ensure accurate alignment of outputs in all applications. Both SOIC and TSSOP package options are available. ### **OUTPUTS OPERATING SIMULTANEOUSLY** Horizontal Scale = 200 ps SLLS554B - NOVEMBER 2002 - REVISED JUNE 2003 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. # **ORDERING INFORMATION** | | PACKAGE DESIGNATOR | PART NUMBER(1) | SYMBOLIZATION | |---|--------------------|----------------|---------------| | | SOIC | SN65LVCP23D | LVCP23 | | Ī | TSSOP | SN65LVCP23PW | LVCP23 | ⁽¹⁾ Add the suffix R for taped and reeled carrier # **PACKAGE DISSIPATION RATINGS** | PACKAGE | CIRCUIT
BOARD MODEL | $T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING | DERATING FACTOR ⁽¹⁾ ABOVE $T_A = 25^{\circ}C$ | T _A = 85°C
POWER RATING | |------------|------------------------|--|--|---------------------------------------| | SOIC (D) | High-K ⁽²⁾ | 1361 mW | 13.9 mW/°C | 544 mW | | TSSOP (PW) | High-K ⁽²⁾ | 1074 mW | 10.7 mW/°C | 430 mW | ⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow. # THERMAL CHARACTERISTICS | | PARAMETER | | TEST CONDITIONS | VALUE | UNITS | |-----|--------------------------------------|---------|--|-------|-------| | 0 | Junction-to-board thermal resistance | D | | 15.7 | °C/W | | θЈВ | | PW | | 22.1 | °C/W | | θЈС | Junction-to-case thermal resistance | D | | 26.1 | °C/W | | | | PW | | 17.3 | °C/W | | PD | Device power dissipation | Typical | V _{CC} = 3.3–V, T _A =25°C, 2 Gbps | 165 | mW | | | | Maximum | V _{CC} = 3.6–V, T _A = 85°C, 2 Gbps | 234 | mW | # **FUNCTION TABLE** | SEL0 | SEL1 | OUT0 | OUT1 | FUNCTION | |------|------|------|------|--------------| | 0 | 0 | IN0 | IN0 | 1:2 Splitter | | 0 | 1 | IN0 | IN1 | Repeater | | 1 | 0 | IN1 | IN0 | Switch | | 1 | 1 | IN1 | IN1 | 1:2 Splitter | # **FUNCTIONAL BLOCK DIAGRAM** ⁽²⁾ In accordance with the High-K thermal metric definitions of EIA/JESD51-7. # **EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS** ### **OUTPUTS** SLLS554B - NOVEMBER 2002 - REVISED JUNE 2003 ### **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range unless otherwise noted⁽¹⁾ | | | | UNITS | |----------------------------|------------------------------------|------------|-----------------| | Supply voltage(2) range, | -0.5 V to 4 V | | | | CMOS/TTL input voltage | (ENO, EN1, SEL0, SEL1) | | -0.5 V to 4 V | | Receiver Input voltage (IN | N+, IN-) | | −0.7 V to 4.3 V | | LVPECL driver output vol | tage (OUT+, OUT-) | | -0.5 V to 4 V | | Outrat summer | Continuous | Continuous | | | Output current | Surge | | 100 mA | | Storage temperature rang | je | | −65°C to 125°C | | Lead temperature 1,6 mm | n (1/16 inch) from case for 10 s | econds | 235°C | | Continuous power dissipa | See Dissipation Rating Table | | | | | Human body model(3) | All pins | ±5 kV | | Electrostatic discharge | Charged-device mode ⁽⁴⁾ | All pins | ±500 V | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # RECOMMENDED OPERATING CONDITIONS | | MIN | NOM | MAX | UNIT | |--|-----|-----|-----|------| | Supply voltage, V _{CC} | 3 | 3.3 | 3.6 | V | | Receiver input voltage | 0 | | 4 | V | | Junction temperature | | | 125 | °C | | Operating free-air temperature, T _A (1) | -40 | | 85 | °C | | Magnitude of differential input voltage VID | 0.1 | | 3 | V | ⁽¹⁾ Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded. ⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminals. ⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A. ⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method C101. # **INPUT ELECTRICAL CHARACTERISTICS** over recommended operatingconditions unless otherwise noted | | PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | | | | |---|---|---|------|--------|------|------|--|--|--| | CMOS/TTL DC SPECIFICATIONS (EN0, EN1, SEL0, SEL1) | | | | | | | | | | | VIH | High-level input voltage | | 2 | | VCC | V | | | | | V _{IL} | Low-level input voltage | | GND | | 0.8 | V | | | | | lιΗ | High-level input current | V _{IN} = 3.6 V or 2.0 V, Vcc= 3.6 V | | ±3 | ±20 | μΑ | | | | | I _I L | Low-level input current | V _{IN} = 0.0 V or 0.8 V, Vcc= 3.6 V | | ±1 | ±10 | μΑ | | | | | VCL | Input clamp voltage | I _{CL} = -18 mA | | -0.8 | -1.5 | V | | | | | LVPECL | OUTPUT SPECIFICATIONS (OUT0, OUT1) | | | | | | | | | | Vон | Output high voltage ⁽²⁾ | See Figure 2 | 2000 | 2280 | 2450 | mV | | | | | VOL | Output low voltage(2) | See Figure 2 | 1100 | 1480 | 1650 | mV | | | | | V _{OD} | Differential output voltage | R _L =50 Ω to V _{TT} = V _{CC} – 2.0 V,
See Figure 2 | 600 | 800 | 1000 | mV | | | | | CO | Differential output capacitance | V _I = 0.4 sin(4E6πt) + 0.5 V | | 3 | | pF | | | | | RECEIVE | R DC SPECIFICATIONS (IN0, IN1) | | • | | | | | | | | VTH | Positive-going differential input voltage threshold | See Figure 1 and Table 1 | | | 100 | mV | | | | | V_{TL} | Negative-going differential input voltage threshold | See Figure 1 and Table 1 | -100 | | | mV | | | | | VID(HYS) | Differential input voltage hysteresis | | | 25 | | mV | | | | | VCMR | Common-mode voltage range | V_{ID} = 100 mV, V_{CC} = 3.0 V to 3.6 V | 0.05 | | 3.95 | V | | | | | | | V _{IN} = 4 V, V _{CC} = 3.6 V or 0.0 | | ±1 | ±10 | | | | | | I _{IN} | Input current | V _{IN} = 0V, V _{CC} = 3.6V or 0.0 | | ±1 | ±10 | μΑ | | | | | C _{IN} | Differential input capacitance | V _I = 0.4 sin (4E6πt) + 0.5 V | | 1 | | pF | | | | | SUPPLY | CURRENT | | | | | | | | | | ICCD | DC supply current | No load | | 50 | 65 | mA | | | | ⁽¹⁾ All typical values are at 25°C and with a 3.3 V supply. ⁽²⁾ Outputs are terminated through a 50- Ω resistor to V_{CC} – 2 V; PECL level specifications are refrenced to V_{CC} and track 1:1 with variation of V_{CC} . SLLS554B - NOVEMBER 2002 - REVISED JUNE 2003 ### **SWITCHING CHARACTERISTICS** over recommended operating conditions unless otherwise noted | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------|---|--|-----|-----|------|-------| | ^t SET | Input to SEL setup time | Figure 5 | 1 | 0.5 | | ns | | tHOLD | Input to SEL hold time | Figure 5 | 1.1 | 0.5 | | ns | | tSWITCH | SEL to switched output | Figure 5 | | 1.7 | 2.5 | ns | | ^t PHKL | Disable time, high-level-to-known LOW | Figure 4 | | 2 | 2.5 | ns | | ^t PKLH | Enable time, known LOW-to-high-level output | Figure 4 | | 2 | 2.5 | ns | | tLHT | Differential output signal rise time (20%–80%)(1) | Figure 3 | 80 | 110 | 220 | ps | | tHLT | Differential output signal fall time (20%–80%)(1) | Figure 3 | 80 | 110 | 220 | ps | | | | V_{ID} = 200 mV, 50% duty cycle, V_{CM} = 1.2 V, 650 MHz | | 15 | 30 | ps | | UIT | LVDS data path peak-to-peak jitter | V_{ID} = 200 mV, PRBS = 2 ²³ _1 data pattern and K28.5 (0011111010), V_{CM} = 1.2 V at 1.3 Gbps | | 50 | 100 | ps | | t _{Jrms} | Added random jitter (rms) | $V_{\mbox{\scriptsize ID}}$ = 200 mV, 50% duty cycle, $V_{\mbox{\scriptsize CM}}$ = 1.2 V, 650 MHz | | 0.3 | 0.5 | psRMS | | ^t PLHD | Propagation delay time, low-to-high-level output ⁽¹⁾ | $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ See Figure 3}$ | 400 | 750 | 1100 | ps | | ^t PHLD | Propagation delay time, high-to-low-level output(1) | $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ See Figure 3}$ | 400 | 750 | 1100 | ps | | tskew | Pulse skew (tpLHD - tpHLD)(2) | Figure 3 | | 20 | 100 | ps | | tccs | Output channel-to-channel skew, splitter mode. | Figure 3 | | 10 | 50 | ps | | f _{MAX} | Maximum operating frequency(3) | | 1 | | | GHz | ### **PIN ASSIGNMENTS** ### D or PW PACKAGE (TOP VIEW) ⁽¹⁾ Input: V_{IC} = 1.2 V, V_{ID} = 200 mV, 50% duty cycle, 1 MHz, t_r/t_f = 500 ps (2) t_{skew} is the magnitude of the time difference between the t_{PLHD} and t_{PHLD} of any output of a single device. (3) Signal generator conditions: 50% duty cycle, t_r or t_f ≤ 100 ps (10% to 90%), transmitter output criteria: duty cycle = 45% to 55% V_{OD} ≥ 300 mV. ### PARAMETER MEASUREMENT INFORMATION Figure 1. Voltage and Current Definitions Figure 2. Typical Termination for LVPECL Output Driver NOTE: All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 0.25$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns; C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. Figure 3. Timing Test Circuit and Waveforms NOTE: All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\Gamma} \le 1$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. Figure 4. Enable and Disable Time Circuit and Definitions **Table 1. Receiver Input Voltage Threshold Test** | APPLIED VOLTAGES | | RESULTING DIFFERENTIAL INPUT VOLTAGE | RESULTING COMMON-
MODE INPUT VOLTAGE | OUTPUT | |------------------|-----------------|--------------------------------------|---|--------| | VIA | V _{IB} | V _{ID} | V _{IC} | | | 1.25 V | 1.15 V | 100 mV | 1.2 V | Н | | 1.15 V | 1.25 V | –100 mV | 1.2 V | L | | 4.0 V | 3.9 V | 100 mV | 3.95 V | Н | | 3.9 V | 4. 0 V | −100 mV | 3.95 V | L | | 0.1 V | 0.0 V | 100 mV | 0.05 V | Н | | 0.0 V | 0.1 V | −100 mV | 0.05 V | L | | 1.7 V | 0.7 V | 1000 mV | 1.2 V | Н | | 0.7 V | 1.7 V | –1000 mV | 1.2 V | L | | 4.0 V | 3.0 V | 1000 mV | 3.5 V | Н | | 3.0 V | 4.0 V | –1000 mV | 3.5 V | L | | 1.0 V | 0.0 V | 1000 mV | 0.5 V | Н | | 0.0 V | 1.0 V | –1000 mV | 0.5 V | Ĺ | H = high level, L = low level $\mathsf{NOTE}^{:}\ \mathsf{tSET}\ \mathsf{and}\ \mathsf{tHOLD}\ \mathsf{times}\ \mathsf{specify}\ \mathsf{that}\ \mathsf{data}\ \mathsf{must}\ \mathsf{be}\ \mathsf{in}\ \mathsf{a}\ \mathsf{state}\ \mathsf{before}\ \mathsf{and}\ \mathsf{after}\ \mathsf{mux}\ \mathsf{control}\ \mathsf{switches}.$ Figure 5. Input to Select for Both Rising and Falling Edge Setup and Hold Times ### TYPICAL CHARACTERISTICS # PEAK-TO-PEAK JITTER VS DATA RATE 230 VCC = 3.3 V, VIC = 1.2 V, VIC = 1.2 V, Input = PRBS 2²³-1 140 140 80 50 0 500 1000 1500 2000 2500 3000 3500 Data Rate - Mbps Figure 15 # **APPLICATION INFORMATION** # TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, ETC.) Figure 16. Low-Voltage Positive Emitter-Coupled Logic (LVPECL) Figure 17. Current-Mode Logic (CML) Figure 18. Single-Ended (LVPECL) Figure 19. Low-Voltage Differential Signaling (LVDS) Figure 20. 2 x 2 Crosspoint Figure 21. 1:2 Spitter Figure 22. Dual Repeater Figure 23. 2:1 MUX ### D (R-PDSO-G**) ### **8 PINS SHOWN** ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Falls within JEDEC MS-012 # PW (R-PDSO-G**) ### 14 PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 ### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products & application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265