# 3, 专业PCB打样IINII 印刷/如想電LEASE

Final Electrical Specifications LTC1655

### 16-Bit Rail-to-Rail Micropower DAC in SO-8 Package

December 1998

### FEATURES

16-Bit Monotonicity Over Temperature

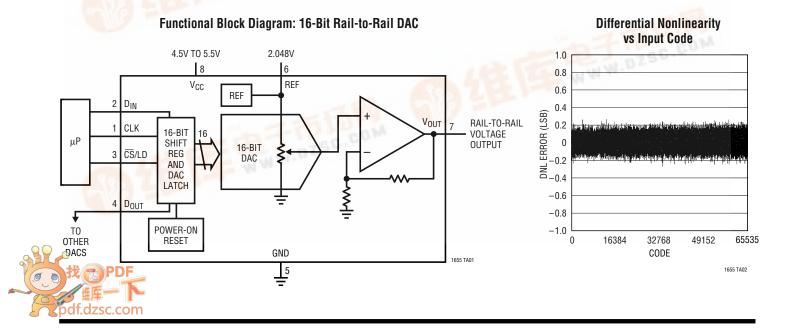
查询LTC1655供应商

- Deglitched Rail-to-Rail Voltage Output
- 5V Single Supply Operation
- I<sub>CC(TYP)</sub>: 600μA
- Internal Reference
- Power-On Reset
- SO-8 Package
- 3-Wire Cascadable Serial Interface
- Maximum DNL Error: 1LSB
- Low Cost

### **APPLICATIONS**

- Digital Calibration
- Industrial Process Control
- Automatic Test Equipment
- Cellular Telephones

# TYPICAL APPLICATION

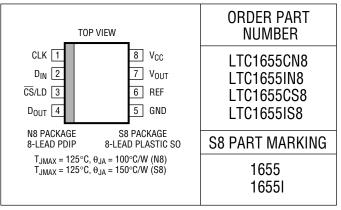

# DESCRIPTION

The LTC<sup>®</sup>1655 is a rail-to-rail voltage output, 16-bit digital-to-analog converter (DAC) in an SO-8 package. It includes an output buffer and a reference. The 3-wire serial interface is compatible with SPI/QSPI and MICROWIRE<sup>™</sup> protocols. The CLK input has a Schmitt trigger that allows direct optocoupler interface.

The LTC1655 has an onboard 2.048 reference that can be overdriven to a higher voltage. The output swings from OV to 4.096V when using the internal reference. The typical power dissipation is 3.0mW.

The LTC1655 is pin compatible with Linear Technology's 12-bit  $V_{OUT}$  DAC family, allowing an easy upgrade path. It is the only buffered 16-bit DAC in an SO-8 package and it includes an onboard reference for stand alone performance.

C, LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a trademark of National Semiconductor Corporation.




### **ABSOLUTE MAXIMUM RATINGS**

| (Note 1)                     |                                   |
|------------------------------|-----------------------------------|
| V <sub>CC</sub> to GND       | 0.5V to 7.5V                      |
| TTL Input Voltage            | 0.5V to 7.5V                      |
| V <sub>OUT</sub> , REF       | $-0.5V$ to V <sub>CC</sub> + 0.5V |
| Maximum Junction Temperature | 125°C                             |
| Operating Temperature Bange  |                                   |

| oporating romporatore nange         |               |
|-------------------------------------|---------------|
| LTC1655C                            | 0°C to 70°C   |
| LTC16551                            | 40°C to 85°C  |
| Storage Temperature Range           | 65°C to 150°C |
| Lead Temperature (Soldering, 10 sec | ) 300°C       |

#### PACKAGE/ORDER INFORMATION



Consult factory for Military grade parts.

#### **ELECTRICAL CHARACTERISTICS**

 $V_{CC}$  = 4.5V to 5.5V,  $V_{OUT}$  unloaded, REF unloaded,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted.

| SYMBOL             | PARAMETER                    | CONDITIONS                                                                              |          | MIN  | ТҮР      | MAX  | UNITS    |
|--------------------|------------------------------|-----------------------------------------------------------------------------------------|----------|------|----------|------|----------|
| DAC                |                              | L                                                                                       | 1        |      |          |      | 1        |
|                    | Resolution                   |                                                                                         | •        | 16   |          |      | Bits     |
|                    | Monotonicity                 |                                                                                         | •        | 16   |          |      | Bits     |
| DNL                | Differential Nonlinearity    | Guaranteed Monotonic (Note 2)                                                           | •        |      | ±0.3     | ±1.0 | LSB      |
| INL                | Integral Nonlinearity        | REF = 2.2V (External) (Note 2)                                                          | •        |      | ±8       | ±20  | LSB      |
| ZSE                | Zero Scale Error             |                                                                                         | •        | 0    |          | 3    | mV       |
| V <sub>OS</sub>    | Offset Error                 | Measured at Code 200, REF = 2.2V (External)                                             | •        |      | ±0.5     | ±3   | mV       |
| V <sub>OS</sub> TC | Offset Error Tempco          |                                                                                         |          |      | ±5       |      | μV/°C    |
|                    | Gain Error                   | REF = 2.2V (External)                                                                   | •        |      | ±5       | ±16  | LSB      |
|                    | Gain Error Drift             |                                                                                         |          |      | 0.5      |      | ppm/°C   |
| Power Su           | upply                        | 1                                                                                       |          |      |          |      | 1        |
| V <sub>CC</sub>    | Positive Supply Voltage      | For Specified Performance                                                               | •        | 4.5  |          | 5.5  | V        |
| I <sub>CC</sub>    | Supply Current               | $4.5V \le V_{CC} \le 5.5V$ (Note 4)                                                     | •        |      | 600      | 1200 | μA       |
| Op Amp             | DC Performance               |                                                                                         |          |      |          |      |          |
|                    | Short-Circuit Current Low    | V <sub>OUT</sub> Shorted to GND                                                         |          |      | 70       | 120  | mA       |
|                    | Short-Circuit Current High   | V <sub>OUT</sub> Shorted to V <sub>CC</sub>                                             | •        |      | 80       | 140  | mA       |
|                    | Output Impedance to GND      | Input Code = 0                                                                          | •        |      | 40       | 120  | Ω        |
|                    | Output Line Regulation       | Input Code = 65535, V <sub>CC</sub> = 4.5V to 5.5V, with Internal Reference             | •        |      |          | 3    | mV/V     |
| AC Perfo           | rmance                       |                                                                                         | <u> </u> |      |          |      | 1        |
|                    | Voltage Output Slew Rate     | (Note 3)                                                                                | •        | ±0.3 | ±0.7     |      | V/µs     |
|                    | Voltage Output Settling Time | (Note 3) to 0.0015% (16-Bit Settling Time)<br>(Note 3) to 0.012% (13-Bit Settling Time) |          |      | 20<br>10 |      | μs<br>μs |
|                    | Digital Feedthrough          |                                                                                         |          |      | 0.3      |      | nV-s     |
|                    | Midscale Glitch Impulse      | DAC Switch Between 8000 and 7FFF                                                        |          |      | 12       |      | nV-s     |

#### **ELECTRICAL CHARACTERISTICS**

 $V_{CC}$  = 4.5V to 5.5V,  $V_{OUT}$  unloaded, REF unloaded,  $T_A$  =  $T_{MIN}$  to  $T_{MAX},$  unless otherwise noted.

| SYMBOL            | PARAMETER                          | CONDITIONS                                     |   | MIN                 | ΤΥΡ   | MAX        | UNITS  |
|-------------------|------------------------------------|------------------------------------------------|---|---------------------|-------|------------|--------|
| Digital I/O       | )                                  |                                                |   |                     |       |            |        |
| VIH               | Digital Input High Voltage         |                                                | • | 2.4                 |       |            | V      |
| VIL               | Digital Input Low Voltage          |                                                | • |                     |       | 0.8        | V      |
| V <sub>OH</sub>   | Digital Output High Voltage        | $I_{OUT} = -1 \text{mA}, D_{OUT} \text{ Only}$ | • | V <sub>CC</sub> – 1 |       |            | V      |
| V <sub>OL</sub>   | Digital Output Low Voltage         | I <sub>OUT</sub> = 1mA, D <sub>OUT</sub> Only  | • |                     |       | 0.4        | V      |
| I <sub>LEAK</sub> | Digital Input Leakage              | $V_{IN} = GND$ to $V_{CC}$                     | • |                     |       | ±10        | μA     |
| CIN               | Digital Input Capacitance          | (Note 6)                                       |   |                     |       | 10         | pF     |
| Switching         |                                    |                                                |   |                     |       |            |        |
| t <sub>1</sub>    | D <sub>IN</sub> Valid to CLK Setup | V <sub>CC</sub> = 5V                           | • | 40                  |       |            | ns     |
| t <sub>2</sub>    | D <sub>IN</sub> Valid to CLK Hold  | V <sub>CC</sub> = 5V                           | • | 0                   |       |            | ns     |
| t <sub>3</sub>    | CLK High Time                      | V <sub>CC</sub> = 5V (Note 6)                  | • | 40                  |       |            | ns     |
| t <sub>4</sub>    | CLK Low Time                       | V <sub>CC</sub> = 5V (Note 6)                  | • | 40                  |       |            | ns     |
| t <sub>5</sub>    | CS/LD Pulse Width                  | V <sub>CC</sub> = 5V (Note 6)                  | • | 50                  |       |            | ns     |
| t <sub>6</sub>    | LSB CLK to CS/LD                   | V <sub>CC</sub> = 5V (Note 6)                  | • | 40                  |       |            | ns     |
| t <sub>7</sub>    | CS/LD Low to CLK                   | V <sub>CC</sub> = 5V (Note 6)                  | • | 20                  |       |            | ns     |
| t <sub>8</sub>    | D <sub>OUT</sub> Output Delay      | $V_{CC} = 5V, C_{LOAD} = 15pF$                 | • | 0                   |       | 120        | ns     |
| t <sub>9</sub>    | CLK Low to CS/LD Low               | V <sub>CC</sub> = 5V (Note 6)                  | • | 20                  |       |            | ns     |
| Reference         | e Output                           |                                                |   |                     |       |            |        |
|                   | Reference Output Voltage           |                                                | • | 2.036               | 2.048 | 2.060      | V      |
|                   | Reference Input Range              | (Notes 5, 6)                                   |   | 2.2                 |       | $V_{CC}/2$ | V      |
|                   | Reference Output Tempco            |                                                |   |                     | 5     |            | ppm/°C |
|                   | Reference Input Resistance         |                                                | • | 8.5                 | 13    |            | kΩ     |
|                   | Reference Short-Circuit Current    |                                                | • |                     | 40    | 100        | mA     |
|                   | Reference Output Line Regulation   | V <sub>CC</sub> = 4.5V to 5.5V                 | • |                     |       | ±1.5       | mV/V   |
|                   | Reference Load Regulation          | I <sub>OUT</sub> = 100μA                       | • |                     |       | 0.5        | mV     |

The  ${\ensuremath{\bullet}}$  denotes specifications which apply over the full operating temperature range.

**Note 1:** Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

**Note 2:** Nonlinearity is defined from code 200 to code 65535 (full scale). See Applications Information.

Note 3: DAC switched between all 1s and code 400.

Note 4: Digital inputs at 0V or  $V_{CC}$ .

Note 5: Reference can be overdriven.

Note 6: Guaranteed by design. Not subject to test.

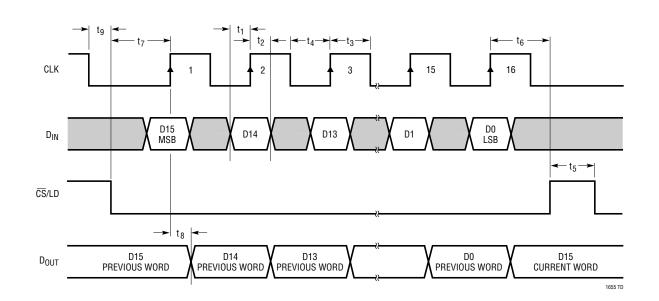
## LTC1655

### PIN FUNCTIONS

**CLK (Pin 1):** The TTL Level Input for the Serial Interface Clock.

 $D_{IN}$  (Pin 2): The TTL Level Input for the Serial Interface Data. Data on the  $D_{IN}$  pin is latched into the shift register on the rising edge of the serial clock and is loaded MSB first. The LTC1655 requires a 16-bit word.

 $\overline{\text{CS}}/\text{LD}$  (Pin 3): The TTL Level Input for the Serial Interface Enable and Load Control. When  $\overline{\text{CS}}/\text{LD}$  is low the CLK signal is enabled, so the data can be clocked in. When  $\overline{\text{CS}}/\text{LD}$  is pulled high, data is loaded from the shift register into the DAC register, updating the DAC output.


 $D_{OUT}$  (Pin 4): Output of the Shift Register. Becomes valid on the rising edge of the serial clock and swings from GND to  $V_{CC}.$ 

GND (Pin 5): Ground.

**REF (Pin 6):** Reference. Output of the internal reference is 2.048V. There is a gain of two from this pin to the output. The reference can be overdriven from 2.2V to  $V_{CC}/2$ . When tied to  $V_{CC}/2$ , the output will swing from GND to  $V_{CC}$ . The output can only swing to within its offset specification of  $V_{CC}$  (see Applications Information).

Vout (Pin 7): Deglitched Rail-to-Rail Voltage Output.

 $V_{CC}$  (Pin 8): Positive Supply Input. 4.5V  $\leq V_{CC} \leq$  5.5V. Requires a bypass capacitor to ground.



### TIMING DIAGRAM

#### DEFINITIONS

**Differential Nonlinearity (DNL):** The difference between the measured change and the ideal 1LSB change for any two adjacent codes. The DNL error between any two codes is calculated as follows:

 $DNL = (\Delta V_{OUT} - LSB)/LSB$ 

Where  $\Delta V_{OUT}$  is the measured voltage difference between two adjacent codes.

**Digital Feedthrough:** The glitch that appears at the analog output caused by AC coupling from the digital inputs when they change state. The area of the glitch is specified in (nV)(sec).

**Full-Scale Error (FSE):** The deviation of the actual fullscale voltage from ideal. FSE includes the effects of offset and gain errors (see Applications Information).

**Gain Error (GE):** The difference between the full-scale output of a DAC from its ideal full-scale value after offset error has been adjusted.

**Integral Nonlinearity (INL):** The deviation from a straight line passing through the endpoints of the DAC transfer curve (Endpoint INL). Because the output cannot go below zero, the linearity is measured between full scale and the

lowest code that guarantees the output will be greater than zero. The INL error at a given input code is calculated as follows:

$$INL = [V_{OUT} - V_{OS} - (V_{FS} - V_{OS})(code/65535)]/LSB$$

Where  $V_{\mbox{OUT}}$  is the output voltage of the DAC measured at the given input code.

**Least Significant Bit (LSB):** The ideal voltage difference between two successive codes.

 $LSB = 2V_{REF}/65536$ 

**Resolution (n):** Defines the number of DAC output states (2<sup>n</sup>) that divide the full-scale range. Resolution does not imply linearity.

**Voltage Offset Error (V\_{OS}):** Nominally, the voltage at the output when the DAC is loaded with all zeros. A single supply DAC can have a true negative offset, but the output cannot go below zero (see Applications Information).

For this reason, single supply DAC offset is measured at the lowest code that guarantees the output will be greater than zero.

#### OPERATION

#### Serial Interface

The data on the  $D_{IN}$  input is loaded into the shift register on the rising edge of the clock. The MSB is loaded first. The DAC register loads the data from the shift register when  $\overline{CS}/LD$  is pulled high. The clock is disabled internally when  $\overline{CS}/LD$  is high. Note: CLK must be low before  $\overline{CS}/LD$  is pulled low to avoid an extra internal clock pulse. The input word must be 16 bits wide.

The buffered output of the 16-bit shift register is available on the  $D_{OUT}$  pin which swings from GND to  $V_{CC}$ .

Multiple LTC1655s may be daisy-chained together by connecting the  $D_{OUT}$  pin to the  $D_{IN}$  pin of the next chip while the clock and  $\overline{CS}/LD$  signals remain common to all

chips in the daisy chain. The serial data is clocked to all of the chips, then the  $\overline{\text{CS}}/\text{LD}$  signal is pulled high to update all of them simultaneously.

#### **Voltage Output**

The LTC1655 rail-to-rail buffered output can source or sink 5mA over the entire operating temperature range while pulling to within 300mV of the positive supply voltage or ground. The output stage is equipped with a deglitcher that gives a midscale glitch of 12nV-s.

The output swings to within a few millivolts of either supply rail when unloaded and has an equivalent output resistance of  $40\Omega$  when driving a load to the rails. The output can drive 1000pF without going into oscillation.

#### **APPLICATIONS INFORMATION**

#### **Rail-to-Rail Output Considerations**

In any rail-to-rail DAC, the output swing is limited to voltages within the supply range.

If the DAC offset is negative, the output for the lowest codes limits at OV as shown in Figure 1b.

Similarly, limiting can occur near full scale when the REF pin is tied to  $V_{CC}/2$ . If  $V_{REF} = V_{CC}/2$  and the DAC full-scale

error (FSE) is positive, the output for the highest codes limits at  $V_{CC}$  as shown in Figure 1c. No full-scale limiting can occur if  $V_{REF}$  is less than ( $V_{CC} - FSE$ )/2.

Offset and linearity are defined and tested over the region of the DAC transfer function where no output limiting can occur.

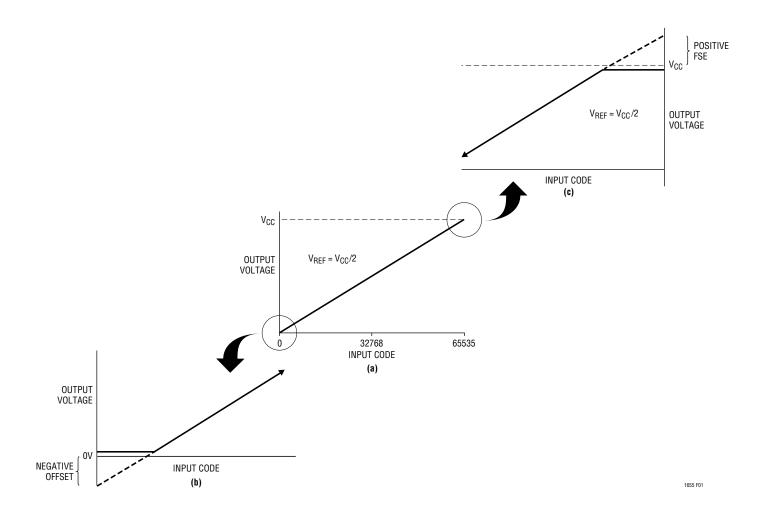
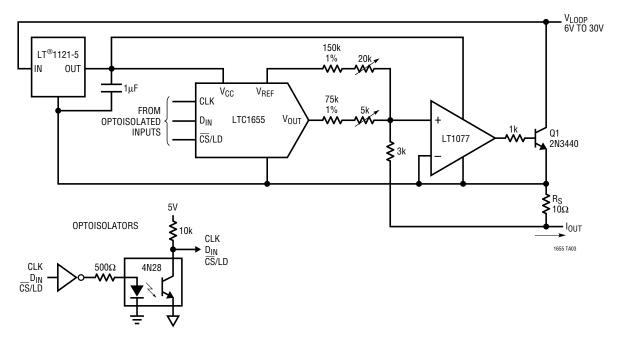
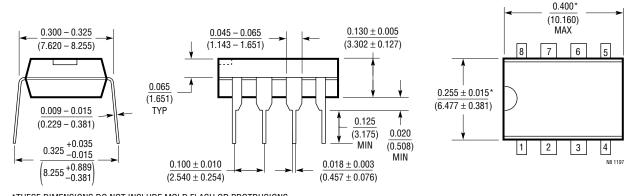




Figure 1. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When  $V_{REF} = V_{CC}/2$ 

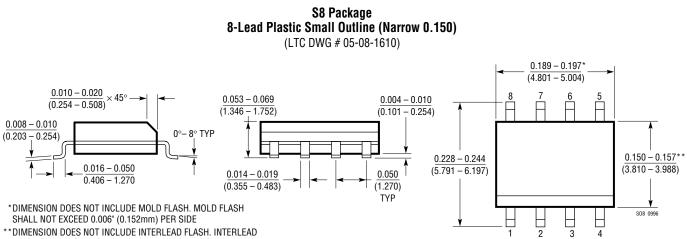
#### **TYPICAL APPLICATION**

This circuit shows how to use an LTC1655 to make an optoisolated digitally controlled 4mA to 20mA process controller. The controller circuitry, including the optoisolation, is powered by the loop voltage that can have a wide range of 6V to 30V. The 2.048V reference output of the LTC1655 is used for the 4mA offset current and  $V_{OUT}$ 


is used for the digitally controlled 0mA to 16mA current.  $R_S$  is a sense resistor and the op amp modulates the transistor Q1 to provide the 4mA to 20mA current through this resistor. The potentiometers allow for offset and full-scale adjustment. The control circuitry dissipates well under the 4mA budget at zero scale.



#### An Isolated 4mA to 20mA Process Controller


**PACKAGE DESCRIPTION** Dimensions in inches (millimeters) unless otherwise noted.

#### N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)



\*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

### **PACKAGE DESCRIPTION** Dimensions in inches (millimeters) unless otherwise noted.



FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

#### **RELATED PARTS**

| PART NUMBER      | DESCRIPTION                                                                                                                                       | COMMENTS                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| LTC1257          | Single 12-Bit $V_{OUT}$ DAC, Full Scale: 2.048V, $V_{CC}$ : 4.75V to 15.75V, Reference Can Be Overdriven Up to 12V, i.e., FS <sub>MAX</sub> = 12V | 5V to 15V Single Supply, Complete V <sub>OUT</sub> DAC in SO-8 Package                                                        |
| LTC1446/LTC1446L | Dual 12-Bit V <sub>OUT</sub> DACs in SO-8 Package                                                                                                 | LTC1446: $V_{CC}$ = 4.5V to 5.5V, $V_{OUT}$ = 0V to 4.095V<br>LTC1446L: $V_{CC}$ = 2.7V to 5.5V, $V_{OUT}$ = 0V to 2.5V       |
| LTC1448          | Dual 12-Bit $V_{OUT}$ DAC, $V_{CC}$ : 2.7V to 5.5V                                                                                                | Output Swings from GND to REF. REF Input Can Be Tied to $V_{\mbox{CC}}$                                                       |
| LTC1450/LTC1450L | Single 12-Bit V <sub>OUT</sub> DACs with Parallel Interface                                                                                       | LTC1450: $V_{CC}$ = 4.5V to 5.5V, $V_{OUT}$ = 0V to 4.095V<br>LTC1450L: $V_{CC}$ = 2.7V to 5.5V, $V_{OUT}$ = 0V to 2.5V       |
| LTC1451          | Single Rail-to-Rail 12-Bit DAC, Full Scale: 4.095V, V <sub>CC</sub> : 4.5V to 5.5V, Internal 2.048V Reference Brought Out to Pin                  | 5V, Low Power Complete V <sub>OUT</sub> DAC in SO-8 Package                                                                   |
| LTC1452          | Single Rail-to-Rail 12-Bit $V_{\text{OUT}}$ Multiplying DAC, $V_{\text{CC}}$ : 2.7V to 5.5V                                                       | Low Power, Multiplying V <sub>OUT</sub> DAC with Rail-to-Rail Buffer Amplifier in SO-8 Package                                |
| LTC1453          | Single Rail-to-Rail 12-Bit $V_{OUT}$ DAC, Full Scale: 2.5V, $V_{CC}$ : 2.7V to 5.5V                                                               | 3V, Low Power, Complete V <sub>OUT</sub> DAC in SO-8 Package                                                                  |
| LTC1454/LTC1454L | Dual 12-Bit $V_{OUT}$ DACs in SO-16 Package with Added Functionality                                                                              | LTC1454: $V_{CC}$ = 4.5V to 5.5V, $V_{OUT}$ = 0V to 4.095V<br>LTC1454L: $V_{CC}$ = 2.7V to 5.5V, $V_{OUT}$ = 0V to 2.5V       |
| LTC1456          | Single Rail-to-Rail Output 12-Bit DAC with Clear Pin,<br>Full Scale: 4.095V, V <sub>CC</sub> : 4.5V to 5.5V                                       | Low Power, Complete V <sub>OUT</sub> DAC in SO-8<br>Package with Clear Pin                                                    |
| LTC1458/LTC1458L | Quad 12 Bit Rail-to-Rail Output DACs with Added Functionality                                                                                     | LTC1458: $V_{CC}$ = 4.5V to 5.5V, $V_{OUT}$ = 0V to 4.095V<br>LTC1458L: $V_{CC}$ = 2.7V to 5.5V, $V_{OUT}$ = 0V to 2.5V       |
| LTC1650          | Single 16-Bit V <sub>OUT</sub> Industrial DAC in 16-Pin SO, V <sub>CC</sub> = $\pm$ 5V                                                            | Low Power, Deglitched, 4-Quadrant Mulitplying $V_{OUT}$ DAC, Output Swing $\pm 4.5V$                                          |
| LTC1658          | Single Rail-to-Rail 14-Bit V <sub>OUT</sub> DAC in 8-Pin MSOP, V <sub>CC</sub> = 2.7V to 5.5V                                                     | Low Power, Multiplying $V_{\rm OUT}$ DAC in MS8 Package. Output Swings from GND to REF. REF Input Can Be Tied to $V_{\rm CC}$ |
| LTC1659          | Single Rail-to-Rail 12-Bit V <sub>OUT</sub> DAC in 8-Pin MSOP, V <sub>CC</sub> = 2.7V to 5.5V                                                     | Low Power, Multiplying $V_{OUT}$ DAC in MS8 Package. Output Swings from GND to REF. REF Input Can Be Tied to $V_{CC}$         |