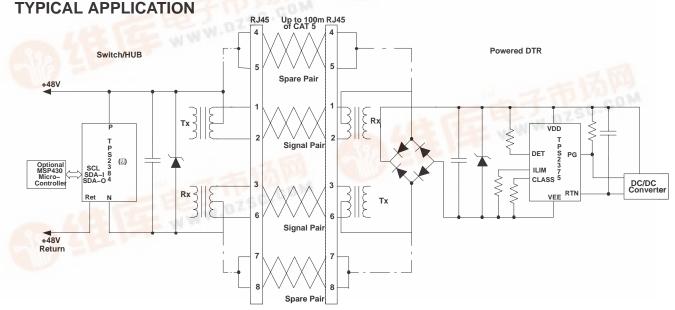
SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

# QUAD INTEGRATED POWER SOURCING EQUIPMENT POWER MANAGER

### **FEATURES**


- Quad-Port Power Management With Integrated Switches and Sense Resistors
- Compliant to IEEE 802.3af Standard
- Operates from a Single 48-V Input Supply
- Individual Port 15-bit A/D
- Auto, Semi-Auto and Power Management Operating Modes
- Controlled Current Ramps for Reduced EMI and Charging of PD's Bulk Capacitance
- I<sup>2</sup>C Clock and Oscillator Watch Dog Timers
- Over-Temperature Protection
- DC and DC Modulated Disconnect
- Supports Legacy Detection for Non-Compliant PD
- Supports AC Disconnect
- High-Speed 400-kHz I<sup>2</sup>C Interface
- Comprehensive Power Management Software Available
- Operating Temperature Range –40°C to 125°C

# APPLICATIONS

- Ethernet Enterprise Switches
- Ethernet Hubs
- SOHO Hubs
- Ethernet Mid-Spans
- PSE Injectors

### DESCRIPTION

The TPS2384 is a quad-port power sourcing equipment power manager (PSEPM) and is compliant to the Power-over-Ethernet (PoE) IEEE 802.3af standard. The TPS2384 operates from a single 48-V supply and over a wide temperature range (-40°C to +125°C). The integrated output eliminates 2 external components per port (FET and sense resistor) and will survive 100-V transient. Four individual 15-bit A/D converters are used to measure port resistance, voltage, current and die temperature making PSE solution simple and robust. The TPS2384 comes with a comprehensive software solution to meet the most demanding application which can serve as a core for all PoE system designs.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments please be aware that an important notice concerning availability, standard warranty, and use in critical applications of the standard warranty availability av

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### **DESCRIPTION (CONTINUED)**

The TPS2384 has three internal supply buses (10 V, 6.3 V and 3.3 V) generated from the 48-V input supply. These supplies are used to bias all internal digital and analog circuitry. Each supply has been brought out separately for proper bypassing to insure high performance. The digital supply (3.3 V) is available for powering external loads up to 2 mA. For more demanding loads it is highly recommended to use external buffers to prevent system degradation. When the TPS2384 is initially powered up an internal Power-on-Reset (POR) circuit resets all registers and sets all ports to the off state to ensure that the device is powered up in a known safe operating state.

The TPS2384 has three modes of operation; auto mode (AM), semi-auto mode (SAM) and power management mode (PMM).

- In auto mode the TPS2384 performs discovery, classification and delivery of power autonomously to a compliant PD without the need of a micro-controller.
- In semi-auto mode the TPS2384 operates in auto mode but users can access the contents of all read status registers and A/D registers thru the I<sup>2</sup>C serial interface. All write control registers are active except for D0 thru D3 of port register 1 (Address 0010) for limited port control. The semi-auto mode allows the TPS2384 to detect valid PD without micro-controller intervention but adds a flexibility to perform power management activities.
- Power management mode (with a micro-controller) allows users additional capabilities of discovering non-compliant (legacy) PDs, performing AC disconnect and advanced power management system control that are based on real time port voltages and currents. All functions in this mode are programmed and controlled through read/write registers over the I<sup>2</sup>C interface. This allows users complete freedom in detecting and powering devices. A comprehensive software package is available that mates the power of the TPS2384 with the MSP430 micro-controller.

TPS2384 integrated output stage provides port power and low-side control. The internal low-side circuitry is designed with internal current sensing so there are no external resistors required. The output design ensures the power switches operate in the fully enhanced mode for low power dissipation.

The I<sup>2</sup>C interface allows easy application of opto-coupler circuitry to maintain Ethernet port isolation when a ground based micro-controller is required. The TPS2384 five address pins (A1 – A5) allow the device to be addressed at one of 31 possible I<sup>2</sup>C addresses. Per-port write registers separately control each port state (discovery, classification, legacy, power up, etc) while the read registers contain status information of the entire process along with parametric values of discovery, classification, and real-time port operating current, voltage and die temperature.

The proprietary 15-bit integrating A/D converter is designed to meet the harsh environment where the PSEPM resides. The converter is set for maximum rejection of power line noise allowing it to make accurate measurements of line currents during discovery, classification and power delivery for reliable power management decisions.

The TPS2384 is available in a 64-pin Power PAD<sup>™</sup> package.



### **ORDERING INFORMATION**

| TEMPERATURE RANGE | PACKAGED DEVICES† |
|-------------------|-------------------|
| $T_A = T_J$       | TQFP – 64 (PAP)‡  |
| -40°C to 125°C    | TPS2384           |

<sup>†</sup> The PAP package is available taped and reeled. Add R suffix to device type

(e.g.TPS2384PAPR) to order quantities of 2,500devices per reel.

### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature (unless otherwise noted)<sup>†‡</sup>

| PARAMETER                                                                                                 | SYMBOL           | RATING      | UNITS |
|-----------------------------------------------------------------------------------------------------------|------------------|-------------|-------|
| V10 current sourced                                                                                       |                  | 100         | μA    |
| V3.3 current sourced                                                                                      |                  | 5           | mA    |
| Applied voltage on CINT#, CT, RBIAS                                                                       |                  | –0.5 to +10 |       |
| Applied voltage on SCL_I, SDA_I, SDA_O, INTB, A1, A2, A3, A4, A5, MS, PORB, WD_DIS, ALT_A/B, AC_LO, AC_HI |                  | -0.5 to +6  | V     |
| Applied voltage on V48, P#, N#                                                                            |                  | -0.5 to +80 |       |
| Junction operating temperature                                                                            | ТЈ               | -40 to 125  |       |
| Storage temperature                                                                                       | T <sub>stg</sub> | -55 to 150  | °C    |
| Lead temperature (soldering, 10 sec.)                                                                     | T <sub>sol</sub> | 260         |       |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

‡ All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the Databook for thermal limitations and considerations of packages.

### **RECOMMENDED OPERATION CONDITIONS**

| Parameter                      | MIN | TYP | MAX | UNITS |
|--------------------------------|-----|-----|-----|-------|
| Input voltage, V <sub>DD</sub> | 44  | 48  | 57  | V     |
| Junction temperature, TJ       | -40 |     | 125 | °C    |

### **ELECTRO STATIC DISCHARGE (ESD) PROTECTION**

|                  | MAX | UNITS |
|------------------|-----|-------|
| Human body model | 1.5 |       |
| CDM              | 1   | kV    |
| Machine model    | 0.2 |       |

#### **DISSIPATION RATING TABLE**<sup>†</sup>

| PACKAGE | THERMAL RESISTANCE JUNCTION TO CASE $\theta_{JC}$ | THERMAL RESISTANCE JUNCTION TO AMBIENT $\theta_{JA}$ |  |
|---------|---------------------------------------------------|------------------------------------------------------|--|
| PAP     | 0.38 °C/W                                         | 21.47 °C/W                                           |  |

<sup>↑</sup>Thermal Resistance measured using 2-oz copper trace and copper pad solder following layout recommendation in TI Publication PowerPad ™ Thermally Enhance Package Technical Brief SLMA002.



### **ELECTRICAL CHARACTERISTICS:**

 $V48 = 48 \text{ V}, \text{ R}_T = 124 \text{ k}\Omega, \text{ C}_T = 220 \text{ pf}, \text{ C}_{INT} = 0.027 \text{ }\mu\text{F} \text{ (low leakage)}, -40^{\circ}\text{C} \text{ to } -125^{\circ}\text{C} \text{ and } \text{T}_A = \text{T}_j \text{ (unless otherwise noted)}$ 

| PARAMETER                                           | TEST CONDITION                                                          | MIN  | TYP   | MAX  | UNITS        |  |
|-----------------------------------------------------|-------------------------------------------------------------------------|------|-------|------|--------------|--|
| Power Supply                                        |                                                                         |      |       |      |              |  |
| V48 quiescent current                               | Off mode (all ports)                                                    | 4    | 9     | 12   |              |  |
| V48 quiescent current                               | Powered mode (all ports)                                                |      | 10    | 14   | mA           |  |
| V10, internal analog supply                         | $I_{LOAD} = 0$                                                          | 9.75 | 10.5  | 11.5 |              |  |
| V3.3, internal digital supply                       | $I_{LOAD} = 0$ to 3 mA                                                  | 3    | 3.3   | 3.7  | V            |  |
| V3.3 short circuit current                          | V = 0                                                                   | 3    |       | 12   | mA           |  |
| V6.3, internal supply                               | lload = 0                                                               | 5    | 6.3   | 7    |              |  |
| V2.5, internal reference supply                     | lload = 0                                                               | 2.46 | 2.5   | 2.54 | V            |  |
| Input UVLO                                          |                                                                         |      | 26    | 32   |              |  |
| Internal POR time out(I <sup>2</sup> C)             | After all supplies are good<br>I <sup>2</sup> C activity is valid       |      | 8     |      |              |  |
| Internal POR time out (Port)                        | After all supplies are good<br>Port active to I <sup>2</sup> C commands |      | 66000 |      | Pulses       |  |
| Port Discovery                                      |                                                                         |      |       |      |              |  |
| Port off #P to #N input resistance                  |                                                                         | 400  |       |      | kΩ           |  |
| Discovery open circuit voltage                      |                                                                         |      | 22    | 30   |              |  |
| Discovery 1 voltage loop control                    | 70 μA < IPORT < 3 mA                                                    | 2.8  | 4.4   |      | V            |  |
| Discovery 2 voltage loop control                    | 70 μA < IPORT I < 3 mA                                                  |      | 8.8   | 10   |              |  |
| Discovery current limit                             | P = N = 48 V                                                            | 3    | 4     | 5    | mA           |  |
| Auto-mode discovery resistance ac-<br>ceptance Band |                                                                         | 19   |       | 26.5 |              |  |
| Auto-mode discovery resistance low<br>end rejection |                                                                         | 0    |       | 15   | kΩ           |  |
| Auto-mode discovery resistance high end rejection   |                                                                         | 33   |       |      | ]            |  |
| Discovery1,2 A/D conversion scale factor            | 100 μA < I <sub>PORT</sub> < 3 mA                                       | 5.30 | 6.10  | 6.75 | count/<br>μA |  |
| Discovery1,2 A/D conversion time                    | I <sub>PORT</sub> = 120 μA                                              |      | 18    | 22   | ms           |  |

SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### **ELECTRICAL CHARACTERISTICS:**

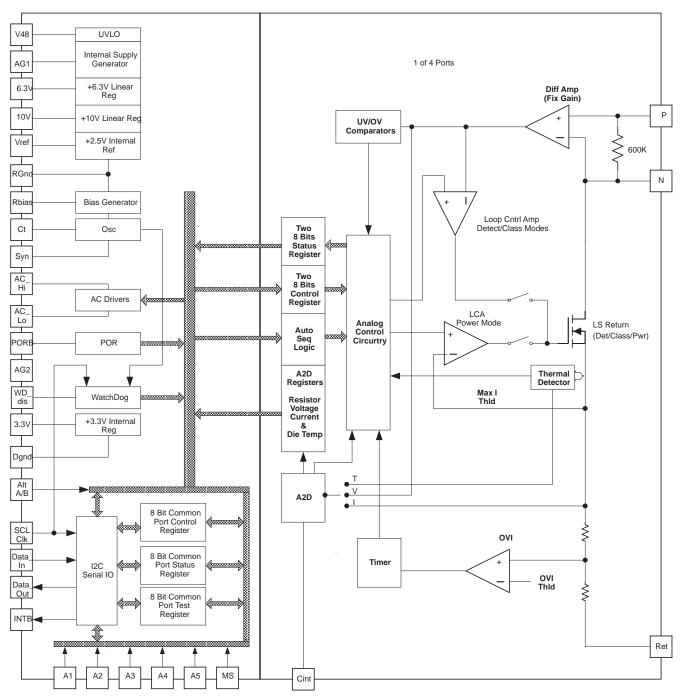
V48 = 48 V, R<sub>T</sub> = 124 k $\Omega$ , C<sub>T</sub> = 220 pf, C<sub>INT</sub> = 0.027  $\mu$ F (low leakage), -40°C to -125°C and T<sub>A</sub> = T<sub>j</sub> (unless otherwise noted)

| PARAMETER                                     | TEST CONDITION                                                                                                                              | MIN  | TYP   | MAX  | UNITS        |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|--------------|
| Port Classification                           | 1                                                                                                                                           | l    | 1     | 1    | 1            |
| Classification voltage loop control           | 100 μA < I <sub>PORT</sub> < 50 mA                                                                                                          | 15   | 17.5  | 20   | V            |
| Classification current limit                  | P = N = 48 V                                                                                                                                | 50   | 60    | 100  |              |
| Class 0 to 1 detection threshold              |                                                                                                                                             | 5.5  | 6.5   | 7.5  | 1            |
| Class 1 to 2 detection threshold              |                                                                                                                                             | 13   | 14.5  | 16   | 1.           |
| Class 2 to 3 detection threshold              |                                                                                                                                             | 21   | 23    | 25   | mA           |
| Class 3 to 4 detection threshold              |                                                                                                                                             | 31   | 33    | 35   |              |
| Class 4 to 0 detection threshold              |                                                                                                                                             | 45   | 48    | 51   |              |
| Classification A/D conversion scale factor    |                                                                                                                                             | 375  | 424   | 475  | Count/<br>mA |
| Classification A/D conversion time            | IPORT = 50 mA                                                                                                                               |      | 18    | 22   | ms           |
| Port Legacy Detection                         | ·                                                                                                                                           |      |       |      |              |
| Legacy current limit                          | P = N = 48 V                                                                                                                                | 2.6  | 3.5   | 4.3  | mA           |
| Legacy voltage A/D conversion scale factor    | 100 mV < V <sub>PORT</sub> < 17.5 V                                                                                                         | 1365 | 1400  | 1445 | Count/V      |
| Legacy A/D conversion time                    | 0 V < V <sub>PORT</sub> < 15 V                                                                                                              |      | 18    | 22   | ms           |
| Port Powered Mode                             |                                                                                                                                             |      | •     | •    | •            |
| Port on resistance                            | 20 mA < I <sub>PORT</sub> < 300 mA                                                                                                          |      | 1.3   |      | Ω            |
| Over current threshold                        | $\begin{array}{l} R_{BIAS} = 124 \text{ k}\Omega,  C_T = 200 \text{ pF} \\ \text{Time} > 75 \text{ ms},  -25 \leq T_j \leq 105 \end{array}$ | 350  | 375   | 400  |              |
| Output current limit                          | $\begin{array}{l} R_{BIAS} = 124 \text{ k}\Omega,  C_T = 200 \text{ pF} \\ Time > 75 \text{ ms},  -25 \leq T_j \leq 105 \end{array}$        |      | 425   | 450  | mA           |
| Average min current trip                      | $R_{BIAS} = 124 k\Omega$ , CT = 200 pF<br>Current pulse > 100 ms                                                                            |      | 7.5   | 10   | 1            |
| Port output UV                                |                                                                                                                                             | 42.0 | 42.7  | 44.0 |              |
| Port output OV                                |                                                                                                                                             | 54   | 55    | 56   | V            |
| Over current time Limit                       | R <sub>BIAS</sub> = 124 kΩ, C <sub>T</sub> = 200 pF                                                                                         | 50   |       | 75   |              |
| Short circuit time Limit                      | R <sub>BIAS</sub> = 124 kΩ, C <sub>T</sub> = 200 pF                                                                                         | 50   |       | 75   |              |
| Turn-off delay from UV/OV faults              | $R_{BIAS} = 124 \text{ k}\Omega, C_T = 200 \text{ pF}$<br>After port enabled and ramped up                                                  |      | 3     |      | - ms         |
| Port current A/D conversion scale fac-<br>tor | 20 mA < I <sub>PORT</sub> I < 300 mA                                                                                                        | 31   | 36.41 | 40   | Count/<br>mA |
| Port current A/D conversion time              | IPORT < 300mA                                                                                                                               |      | 18    | 22   | ms           |
| Port voltage A/D conversion scale fac-<br>tor | 45 V < V <sub>PORT</sub> < 56 V                                                                                                             | 335  | 353   | 370  | Count/V      |
| Port voltage A/D conversion time              | 45 V < VPORT < 56 V                                                                                                                         |      | 18    | 22   | ms           |
| Port temperature A/D conversion scale factor  |                                                                                                                                             |      | 300   |      | Count/<br>°C |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

#### **ELECTRICAL CHARACTERISTICS:**


 $V48 = 48 \text{ V}, \text{ R}_{T} = 124 \text{ k}\Omega, \text{ C}_{T} = 220 \text{ pf}, \text{ C}_{INT} = 0.027 \text{ }\mu\text{F} \text{ (low leakage)}, -40^{\circ}\text{C} \text{ to } -125^{\circ}\text{C} \text{ and } \text{T}_{A} = \text{T}_{j} \text{ (unless otherwise noted)}$ 

| PARAMETER                                                                 | TEST CONDITION            | MIN | ТҮР | MAX | UNITS |
|---------------------------------------------------------------------------|---------------------------|-----|-----|-----|-------|
| Port Disable Mode                                                         |                           | ł   |     |     | 1     |
| Port N voltage                                                            | P = 48 V                  | 47  |     |     | V     |
| AC Low & AC High Specification                                            | •                         |     | •   | •   |       |
| AC_lo, AC_hi - low output voltage                                         |                           | 0   |     | 0.5 |       |
| AC_lo – high output voltage                                               |                           | 3.0 |     | 5.0 | V     |
| AC_hi – high output voltage                                               |                           | 5.0 |     | 7.0 |       |
| Digital I <sup>2</sup> C DC Specifications                                |                           | ·   |     |     |       |
| SCL, SDA_I, A1–A5 ,WD_DIS,<br>ALTA/B, MS, PORB logic input thresh-<br>old |                           |     | 1.5 |     | V     |
| SCL, SDA_I input hysteresis                                               |                           |     | 250 |     |       |
| MS, PORB input hysteresis                                                 |                           |     | 150 |     | mV    |
| WD_DIS,ALT A/B, MS, PORB input<br>pull-down resistance                    | Input voltage 0.5 to 3 V  |     | 50  |     | kΩ    |
| A1–A5 pull-down current                                                   |                           |     | 10  |     | μΑ    |
| SDA_O logic high leakage                                                  | Drain = 5 V               |     | 100 |     | nA    |
| SDA_O logic low                                                           | ISINK = 10 mA             |     | 200 |     | mV    |
| INTB logic high leakage                                                   | Drain = 6 V               |     | 10  |     | μΑ    |
| INTB logic low                                                            | I <sub>SINK</sub> = 10 mA |     | 200 |     | mV    |
| Digital I <sup>2</sup> C Timing                                           |                           | ·   |     |     |       |
| SCL clock frequency                                                       |                           | 0   |     | 400 | kHz   |
| Pulse duration                                                            | SCL high                  | 0.6 |     |     |       |
| Pulse duration                                                            | SCL low                   | 1.3 |     |     |       |
| Rise time, SCL toSDA                                                      |                           |     |     | 300 |       |
| Fall time, SCL to SDA                                                     |                           |     |     | 300 | ]     |
| Setup time, SDA to SCL                                                    |                           | 250 |     |     |       |
| Hold time, SCL to SDA                                                     |                           | 300 |     | 900 | μs    |
| Bus free time between start and stop                                      |                           | 1.3 |     |     |       |
| Setup time, SCL to Start condition                                        |                           | 0.6 |     |     |       |
| Hold time, start condition to SCL                                         |                           | 0.6 |     |     |       |
| Setup time, SCL to stop condition                                         |                           | 0.6 |     |     |       |

NOTES: 1. Probe test only. TPx numbers are internal device test points only available at wafer probe 2. Ensured by design. Not 100% tested in production.

SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### **TPS2384 SINGLE PORT BLOCK DIAGRAM**





SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### **TERMINAL FUNCTIONS**

#### Power and Ground

| Pin Name | Pin # | I/O | Description                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V48      | 60    | Ι   | 48-V input to the device. This supply can have a range of 44 to 57 V. This pin should be de-coupled with a $0.1$ - $\mu$ F capacitor from V48 to AG1 placed as close to the device as possible.                                                                                                                                                                                 |
| V10      | 58    | 0   | 10-V analog supply. The 10-V reference is generated internally and connects to the main internal analog power bus. A $0.1$ - $\mu$ F de-coupling capacitor should terminate as close to this node and the AG1 pin as possible. Do not use for an external supply.                                                                                                               |
| V6.3     | 59    | 0   | 6.3-V analog supply. A 0.1- $\mu$ F de-coupling capacitor should terminate as close to this pin and the AG1 pin as possible. Do not use for an external supply.                                                                                                                                                                                                                 |
| V3.3     | 24    | 0   | 3.3-V logic supply. The 3.3-V supply is generated internally and connects to the internal logic power bus. A 0.1- $\mu$ F de-coupling capacitor should terminate as close to this node and the DG pin as possible. This output can be used as a low current supply to external logic.                                                                                           |
| V2.5     | 54    | 0   | 2.5-V reference supply. The V2.5 is generated internally and connects to the internal reference power bus. This pin should not be tied to any external supplies. A $0.1-\mu F$ de-coupling capacitor should terminate as close to this node and the RG pin as possible. Do not use for an external supply.                                                                      |
| AG1      | 57    | GND | Analog ground 1. This is the analog ground of the V6.3, V10 and V48 power systems. It should be exter-<br>nally tied to the common copper 48-V return plane. This pin should carry the low side of three de-cou-<br>pling capacitors tied to V48, V10 and V6.3.                                                                                                                 |
| AG2      | 61    | GND | Analog ground 2. This is the analog ground which ties to the substrate and ESD structures of the device. It should be externally tied to the common copper 48-V return plane. AG1 and AG2 must be tied together directly for the best noise immunity.                                                                                                                           |
| DG       | 23    | GND | Digital ground. This pin connects to the internal logic ground bus. It should be externally tied to the common copper 48-V return plane.                                                                                                                                                                                                                                        |
| RG       | 56    | GND | Reference ground. This is a precision sense of the external ground plane. The integration capacitor (CINT#) and the biasing resistor (RBIAS pin) should be tied to this ground. This ground should also be used to form a printed wiring board ground guard ring around the active node of the integration capacitor (CINT#). It should tie to common copper 48-V return plane. |

### Port Analog Signal

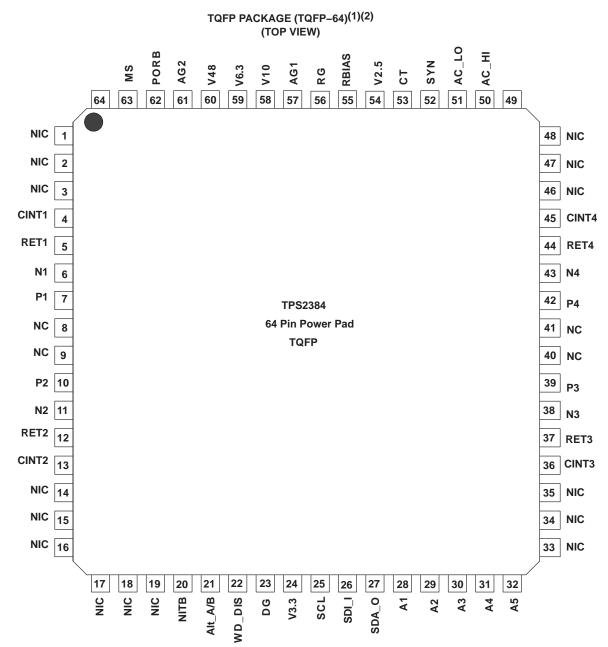
| Pin Name | Pin # | I/O | Description                                                                                                                                                                                                       |  |
|----------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| P1       | 7     | I   |                                                                                                                                                                                                                   |  |
| P2       | 10    | Ι   | Port Positive. 48-V load sense pin. Terminal voltage is monitored and controlled differentially with re-                                                                                                          |  |
| P3       | 39    | Ι   | spect to each Port N pin. Optionally, if the application warrants, this high side path can be protected with the use of a self–resetting poly fuse.                                                               |  |
| P4       | 42    | Ι   |                                                                                                                                                                                                                   |  |
| N1       | 6     | Ι   |                                                                                                                                                                                                                   |  |
| N2       | 11    | Ι   | Port negative. 48-V load return pin. The low side of the load is switched and protected by internal circuit-                                                                                                      |  |
| N3       | 38    | Ι   | ry that will limit the current.                                                                                                                                                                                   |  |
| N4       | 43    | Ι   |                                                                                                                                                                                                                   |  |
| Ret1     | 5     | Ι   |                                                                                                                                                                                                                   |  |
| Ret2     | 12    | Ι   |                                                                                                                                                                                                                   |  |
| Ret3     | 37    | Ι   | 48-V return pin                                                                                                                                                                                                   |  |
| Ret4     | 44    | Ι   |                                                                                                                                                                                                                   |  |
| Cint1    | 4     | I   |                                                                                                                                                                                                                   |  |
| Cint2    | 13    | I   | Integration capacitor. This capacitor is used for the ramp A/D converter signal integration. Connect a $0.027 \mu$ F capacitor from this pin to #RG. To minimize errors use a polycarbonate, polypropylene, poly- |  |
| Cint3    | 36    | I   | styrene or teflon capacitor type to prevent leakage. Other types of capacitors can be used with in-                                                                                                               |  |
| Cint4    | 45    | I   | creased conversion error.                                                                                                                                                                                         |  |



### **TERMINAL FUNCTIONS**

### Analog Signals

| Pin Name | Pin # | I/O | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СТ       | 53    | I   | This is a dual-purpose pin. When tied to an external capacitor this pin sets the internal clock. When the CT pin is grounded the SYN pin turns from a output to an input (see SYN pin description)<br>The timing capacitor and the resistor on the RBIAS pin sets the internal clock frequency of the device. This internal clock is used for the internal state machine, integrating A/D counters, POR time out, faults and delay timers of each port. Using a 220-pF capacitor for CT and a 124-k $\Omega$ resistor for RBIAS sets the internal clock to 245 kHz and ensure IEEE 802.3af compliance along with maximizing the rejection of 60-Hz line frequency noise from A/D measurements. |
| RBIAS    | 55    | I   | Bias set resistor. This resistor sets all precision bias currents within the chip. This pin will regulate to $1.25V$ (V2.5/2) when a resistor is connected between RBIAS and RG. This voltage and RBIAS generates a current which is replicated and used throughout the chip. This resistor also works in conjunction with the capacitors on CT and CINT to set internal timing values. The RBIAS resistor should be connected to RG. RBIAS is a high impedance input and care needs to be taken to avoid signal injection from the SYN pin or I <sup>2</sup> C signals.                                                                                                                       |
| SYN      | 52    | I/O | This is a dual purpose pin. When the CT pin is connected to a timing capacitor this output pin is a 0 to 3.3 V pulse of the internal clock which can be used to drive other TPS2384 SYN pins for elimination of a timing capacitor. When the CT pin is grounded this pin becomes an input pin that can be driven from a master TPS2384 or any other clock generate signal.                                                                                                                                                                                                                                                                                                                     |
| AC_LO    | 51    | 0   | Open drain output pin for AC disconnect excitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AC_HI    | 50    | 0   | Totem poll output pin for AC disconnect excitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |


#### **Digital Signals**

| Pin Name | Pin # | I/O | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCL      | 25    | I   | Serial clock input pin for the I <sup>2</sup> C interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDA_I    | 26    | I   | Serial data input pin for the I <sup>2</sup> C interface. When tied to the SDA_O pin, this connection becomes the stan-<br>dard bi-directional serial data line (SDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SDA_O    | 27    | 0   | Serial data open drain output for the I <sup>2</sup> C interface. When tied to the SDA_I pin, this connection becomes the standard bi-directional serial data line (SDA). This is a open drain output that can drive opto-coupler LEDs directly from the 48-V bus with an external, series current limiting resistor.                                                                                                                                                                                                                                                                                                |
| WD_DIS   | 22    | I   | The WD_DIS pin disables the watchdog timer function when connected to 3.3 V. The pin has internal 50-k $\Omega$ resistor to digital ground. The watchdog timer monitors the I <sup>2</sup> C clock pin (SCL) and the internal oscillator activity in power management mode and only the internal oscillator activity in auto mode.                                                                                                                                                                                                                                                                                   |
| INTB     | 20    | 0   | This is an open-drain output that goes low if a fault condition occurs on any of the 4 ports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ALT A/B  | 21    | ļ   | When this input is set to logic low there is no back-off time after a discovery failure. When this pin set to a logic high there is a back-off time (approximately 2 seconds) before initiating another discovery cycle. This pin has an internal $50$ -k $\Omega$ resistor pull-down to digital ground.                                                                                                                                                                                                                                                                                                             |
| A1       | 28    | I   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A2       | 29    | I   | Address 1 through 5. This is the I <sup>2</sup> C address select input. Select the appropriate binary address on these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A3       | 30    | Ι   | pins by connecting this pin to chip ground for a logic low and tying this pin to the V3.3 pin for a logic high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A4       | 31    | I   | Each address line has an internal current source pull-down to digital ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A5       | 32    | I   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MS       | 63    | I   | The MS pin selects either the auto mode (MS Low) or the power management mode, PMM, (MS High). This pin can be held low for controller-less standalone applications. When MS is Low and the POR timing cycle is complete the chip will sequentially <i>Discover, Classify</i> and <i>Power on</i> each port. When MS is set high the ports are controlled by register setting via the I <sup>2</sup> C bus. The MS pin has an internal 50-k $\Omega$ resistor pull-down to analog ground.                                                                                                                            |
| PORB     |       | I   | This pin can be used to override the internal POR. When held low, the I <sup>2</sup> C interface, all the state machines, and registers are held in reset. When all internal and external supplies are within specification, and this pin is set to a logic high level, the POR delay will begin. The I <sup>2</sup> C interface and registers will become active within 70 $\mu$ s of this event and communications to read or preset registers can begin. The reset delay for the remainder of the chip then extinguishes in 1 second. This pin has an internal 50-k $\Omega$ resistor pull-down to analog ground. |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

#### **CONNECTION DIAGRAM**



NOTES: 1. NIC = No internal connection.

2. NIC pins can be tied to the ground plane for improved thermal characteristics and to prevent noise injection from unused pins.

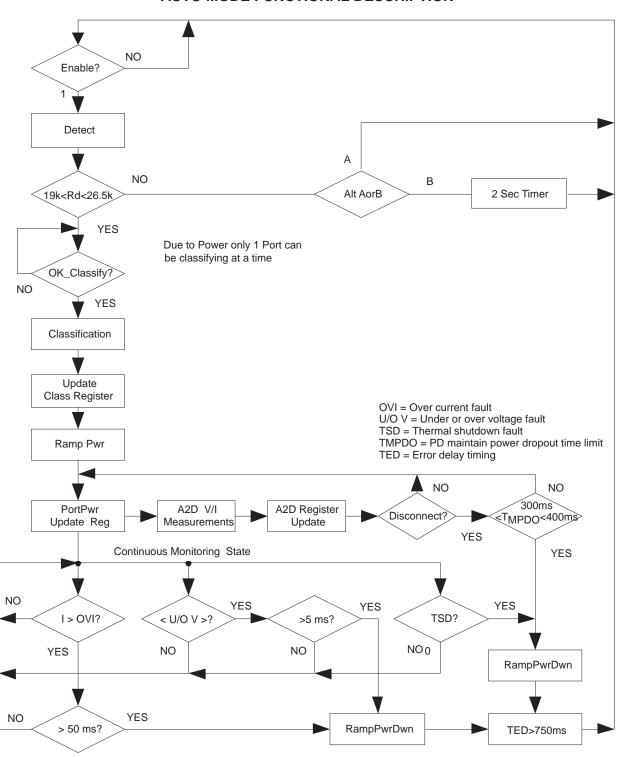


### AUTO MODE FUNCTIONAL DESCRIPTION

### Auto Mode

Auto mode (AM, MS = 0) operation is the basic approach for applying power to IEEE compliant PD's. When AM has been selected the TPS2384 automatically performs the following functions;

- Discovery of IEEE 802.3af compliant power devices (PD)
- Classification
- Power delivery
- Port over/under voltage detection
- Port over current detection (350 mA < I<sub>PORT</sub> < 400 mA)</li>
- Port maximum current limit (400 mA < I<sub>PORT</sub> < 450 mA)</li>
- DC disconnect (5 mA < I<sub>PORT</sub>< 10 mA)
- Thermal shutdown protection (Tj > 150° C)
- Internal oscillator watch dog


In AM the contents of all read registers are available via the I<sup>2</sup>C interface. In addition all control registers except for the function bits can be written. This supports a semi-auto mode where the TPS2384 auto detects compliant PD's while a host can access the A/D registers and class information and then implement power management (including turning a port off, responding to faults, etc).

The write registers that are still active in AM are;

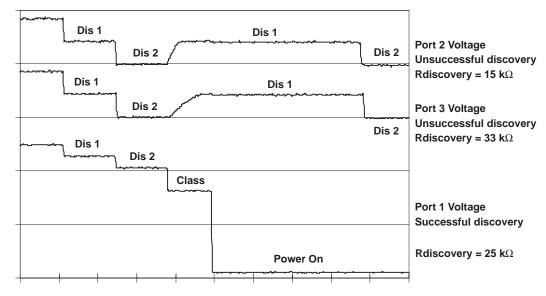
- All ports disable common write register 0001
- Over/Under Voltage Faults common write register 0001
- Software reset common write register 0001
- Disconnect disable write register 0001
- Discovery fault disable write register 0001
- Port enable write register 0011
- Power mode class over current threshold enable write register 0011



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005



AUTO MODE FUNCTIONAL DESCRIPTION






### AUTO MODE FUNCTIONAL DESCRIPTION

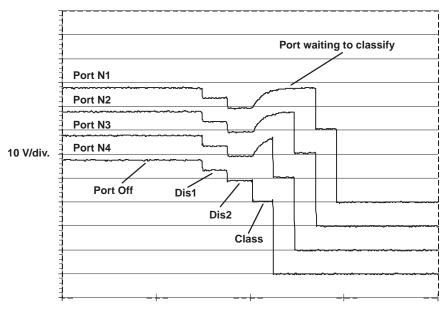
### **AM Discovery**

The TPS2384 uses two low level probe signals (typically 4.4 V and 8.8 V) during the discovery process to determine whether a valid PD is present. The use of multi point detection method for the PD resistor measurement allows accurate detection even when series steering diodes are present. The low level probe voltages also prevent damage to non-802.3 devices. When a valid PD has been detected the TPS2384 moves to classification. If a valid PD has not been detected the TPS2384 continues to cycle through the discovery process. The waveform in Figure 2 shows typical N-pin waveforms for the discovery of a valid PD and the failure to discovery due to a discovery resistor of 15 k $\Omega$  and 33 k $\Omega$ .



t - Time - 20 ms/div.

Figure 2.




SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### AUTO MODE FUNCTIONAL DESCRIPTION

### **AM Classification**

After a successful discovery of a valid PD the TPS2384 enters the classification function that identifies the power level based on the PD's current signature. The classification current level is measured at a reduced terminal voltage of 17.5 V and classified with 15 bits of resolution. During classification the power consumption can be at its highest so to prevent over temperature shutdown in auto mode only one port classifies at a time. When multi-ports successfully discovery and enter classification at the same time the auto sequencer processes each request separately allowing only one port to enter classification. Figure 3 shows all 4 ports successfully detecting a valid PD at the same time and than the classification of each port occurring separately.



t – Time – 20 ms/div.

Figure 3.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### AUTO MODE FUNCTIONAL DESCRIPTION

Upon completion of classification the port classification register is updated. In AM mode this information is not used but for semi-auto mode the class information can be used for power management and the over current threshold can be set to correspond to the PD's classification by setting Bit 7 in the individual port control register address 0011. The Figure 4 shows actual class currents and the class assignment which where stored in the register. These assignments are compliant with the IEEE 802.3af Standard

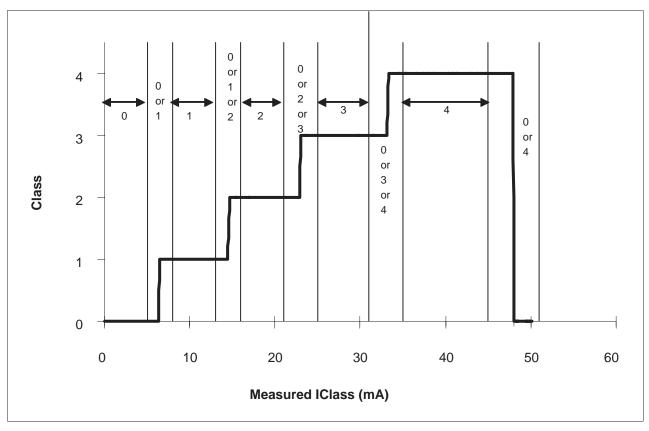
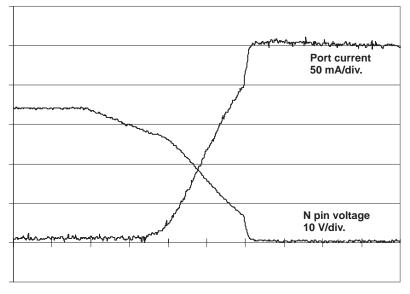



Figure 4.




SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### AUTO MODE FUNCTIONAL DESCRIPTION

#### **AM Power Delivery**

After successfully discovery and classification of a valid PD the power is delivered by controlling the current to the PD until its current requirements are met or until the internal current limit is reached (approximately 425 mA). The power switch is fully enhanced after 500  $\mu$ s. Figure 5 show the voltage and the current that is being applied to the PD during power-up and reaching the PD load of 250 mA.



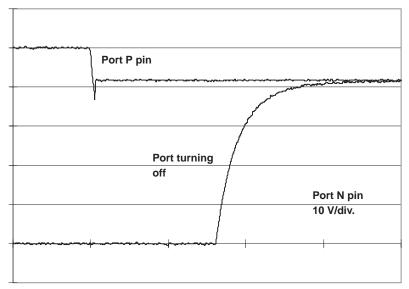
t – Time – 100  $\mu \text{s/div.}$ 



After power has been applied to the PD the TPS2384 automatically enters the current and voltage sample mode. The sample mode performs 31 current measurements and a 1 voltage measurement. Each measurement takes approximately 18 ms to complete. The port remains powered and the current/voltage measurement cycle continues until a fault condition occurs. The current and voltage measurements are both stored in the A/D current and voltage registers and can be access through the I<sup>2</sup>C pins. This allows power management in the A/M if it is desired.

### AUTO MODE FUNCTIONAL DESCRIPTION

#### **AM Faults**


AM faults are;

- Under and over voltage faults
- Over current faults
- Under current (dc modulated) fault
- Thermal shutdown fault
- Watch dog oscillator fault

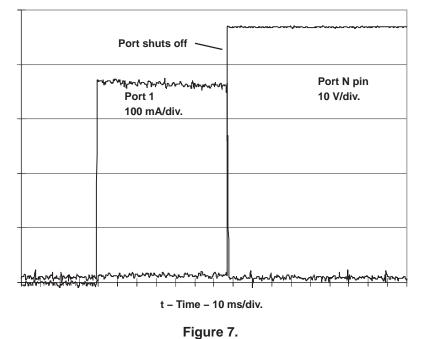
Any one of these faults will cause the port to shutdown.

### **Over/Under Voltage Fault**

Over/under voltage faults are only processed after power up has completed. The TPS2384 measures the voltage between the P and N pin and if this voltage drops below the under voltage threshold (typical 43 V) or increases above the over voltage threshold (53 V) the voltage timer is turned on. When the voltage timer reaches its time out limit that is set between 2 ms to 5 ms the corresponding port will be turned off and the UV/OV fault bit is set in the port status register. If the over/under voltage condition goes away prior to the voltage timer reaching its limit the timer is reset and waits for the next event. Figure 6 shows a voltage fault lasting for more then 2 ms that has caused the port to shutdown.



t – Time – 2 ms/div.






### AUTO MODE FUNCTIONAL DESCRIPTION

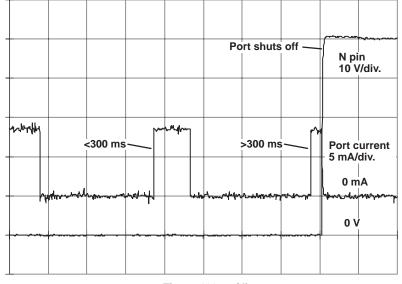
### **Over Current or Current Limit Faults**

Over current or current limit faults are conditions when the load current that is being sensed trips either the over current comparator (350 mA to 400 mA) or the max current comparator (400 mA to 450 mA) and turns on the over current timer. When the over current timer reaches its time out limit that is set between 50 ms to 80 ms the corresponding port is turned off and the over current bit is set in the port status register. If the over current condition goes away prior to the over current timer reaching its limit the timer is reset and waits for the next event. Figure 7 shows an over current fault lasting more than 50 ms that has caused the port to shut off.



#### \_

### Under Current Fault (DC Modulated Disconnect)


Under current fault (dc modulated disconnect) is a condition when the load current that is being measured drops below 7.5 mA and turns on the disconnect timer. If the disconnect timer reaches its time out limit that is set between 300 ms to 400 ms the corresponding port is turned off and the load disconnect bit is set in the port status register. If the under current condition goes away prior to the disconnect timer reaching its limit the timer is reset and the port remains powered.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### AUTO MODE FUNCTIONAL DESCRIPTION

Figure 8 shows dc disconnect event. In this setup the load current was set right above the 7.5 mA threshold. The duty cycle of the load was then adjusted until the point within the disconnect window of 300 ms to 400 ms.



t – Time – 100 ms/div.

Figure 8.



### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

#### **Power Management Mode (PMM)**

Power management mode (PMM) has been designed to work efficiently with simple low-cost micro controllers such as those in the MPS430 family.

The power management mode uses 13 self-contained functions to implement power management. You simply write/read through the  $I^2C$  pins and wait for the function done bit to be set. If an A/D measurement was performed during the function the results can be access by going to the read mode and addressing the proper register.

#### **13 Functions**

- **Disable:** Disable the port and reset all functions.
- **Discovery 1:** Enable the discovery 1 condition which applies a 4.4 V across the PD and measure and store the resulting current.
- **Discovery 2:** Enable the discovery 2 condition which applies a 8.8 V across the PD and measure and store the resulting current.
- V Sample: Measure the voltage between the P and N pins and store the result in the A/D voltage register.
- Legacy: Enable the 3.5-mA current source for measuring capacitance and measure the voltage across the P and N terminals and store the result in the A/D voltage register.
- **Classify:** Enable the classification condition which applies 17.7 V across the PD and measure and store the resulting current.
- **Rup Pwr:** Turn on the output switch while controlling the current being delivered to the PD until the PD current needs are met or the max current is reached.
- **C Sample:** Continuous cycle of 31 current measurements and 1 voltage measurement. After each measurement the contents for the appropriate register is updated.
- Rdwn: Turn off the output switch while controlling current until output current reaches 0 mA.
- AC Low: Turns on open drain output FET and measures voltage between P and N pin and store result in A/D voltage registers.
- AC High: Turns on high side output FET and measures voltage between P and N pin and store result in A/D voltage registers.
- ISample: Measure the current and store the result in the A/D current register.
- **TSample:** Measure the internal die temperature and store the result in the A/D temperature register.



#### Wait for Next Function Call Measure Die Temperature (18mS) Set Done Bit T Sample 1100 Measure Chnl I (18mS) Wait for Next Function Call Set Done Bit I Sample 1011 Measure Chnl V (18mS) Apply AC High Voltage Wait for Next Function Call Set Done Bit AC High 1010 called. Example Function 1 – Port Voltage remains at 4.4V 1. Each Function State remains set until a new function is 2. Times shown are typical and set by Rbias, and Ct. Apply AC Low Voltage Wait for Next Function Call Measure Chnl V (18mS) Set Done Bit AC Low 1001 and Resistor Register value is held. Wait for Next Function Call Set Done Bit Ramp Down Pwr Off Rdwn 1000 ¥ Notes: Measure Chnl V (1 Sample) Set Done Bit Clear On Read Measure Chni I (31 Samples) Wait for Next Function Call C Sample 0111 lf 0111 Repeat Enable OVR I , Ovr V & Und V Comparators Wait for Next Function Call Ramp Pwr 1.4A/mSec Set Done Bit Control Register Latch State Power On Rup/Pwr 0110 • Decoder • Apply 18V (Imax 100mA) To Chnl Measure Chnl I (18mS) Wait for Next Function Call Set Done Bit Enable Control Classify 0101 Measure Chnl V (18mS) Apply 2.5mA (Vmax 18) to Chnl Wait for Next Function Call Set Done Bit Enable Control Legacy 0100 Enable Diff Amp Av 0.107 Measure Chnl V (18mS) Wait for Next Function Call Set Done Bit V Sample 0011 Measure Chnl I (18mS) Wait for Next Function Call Apply 8.8V (Imax 5mA) To Chnl Set Done Bit Discover 2 0010 4mS Delay Start A2D Enable Control Measure Chnl I (18mS) Wait for Next Function Call Apply 4.4V (Imax 5mA) To Chnl 4mS Delay Start A2D Set Done Bit Discover 1 0001 Enable Control Wait for Next Function Call Power Down Set Done Bit Reset all Functions Disable 0000

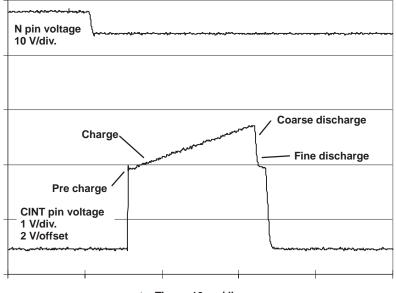
12C

SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

Figure 9.




# **TPS2384**

SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

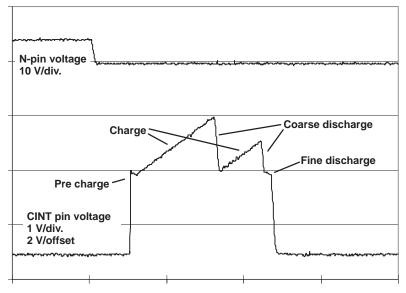
### **PMM Discovery 1**

PMM discovery 1 function waveforms for the N and CINT pins are shown in Figure 10. The measurement is being performed using 25 k $\Omega$  impedance between the P and N pin. The discovery 1 voltage is allowed to settle for approximately 5 ms before the A/D begins integrating. The voltage on the CINT pin shows the A/D cycle. There are 4 distinct regions to any A/D cycle: pre-charge (to a known starting voltage), charge, coarse discharge, and fine discharge. CINT pin is very high impedance therefore extreme care must be taken to avoid any noise or leakage affecting this pin. For the measurements where CINT voltage is shown a buffer was used to prevent performance degradation. The A/D measurement time is approximately 18 ms. The entire discovery 1 function takes approximately 22 ms to complete. The function remains set and the data in the register remains until another function is called. At the end of the fine discharge ramp the data is stored in the resistor register and the done bit is set.



t – Time – 10 ms/div.

Figure 10.




SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

#### **PMM Discovery 2**

PMM discovery 2 function waveforms for the N and CINT pins are shown in Figure 11. Again the measurement is being performed using 25 k $\Omega$  impedance between the P and N pin. The discovery 2 function was call after a discovery 1 function so the voltage ramps from 4.4 V to 8.8 V below the P pin. The discovery 2 voltage is given 5 ms to settle before the A/D begins to integrate. At the end of the fine discharge ramp the data is stored in the resistor register and the done bit is set.



t – Time – 10 ms/div.

Figure 11.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

#### **PMM Classification**

PMM classification function looks similar to discovery 1 and 2 except that the voltage between the P and N pins regulates to approximately 17.5 V.

#### **PMM Legacy**

PMM legacy function is used to detect PDs that are non compliant. Legacy detection uses a current source (typically 3.5 mA) as a test current while the A/D measures the average voltage for approximately 18 ms. The waveform shown in Figure 12 is the legacy function charging a  $10-\mu$ F capacitor. The capacitance charges to a value that is no greater than 20 V below the P port voltage. As the capacitor is charging the A/D is accumulating counts in the voltage A/D register. Figure 13 shows the relationship between port capacitance and the number of counts. A user can characterize non-compliant PD's signatures and use the legacy function to power these devices.

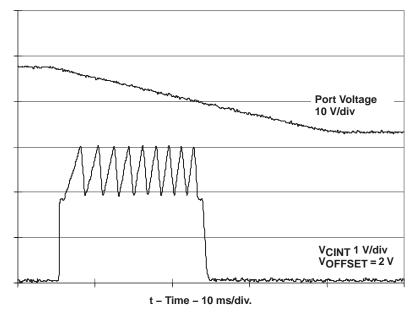
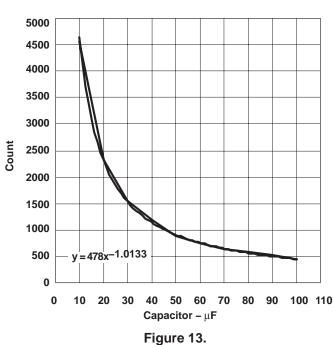
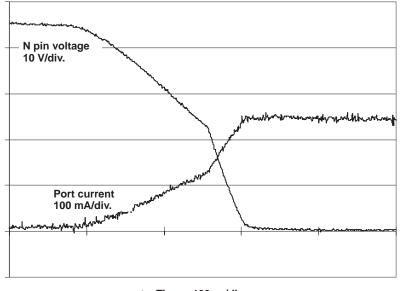




Figure 12.


SLUS634B - NOVEMBER 2004 - REVISED MAY 2005



#### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

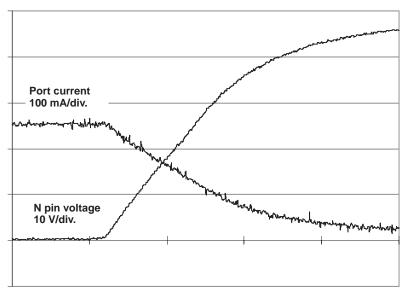
#### **PMM Rup Pwr**

PMM R<sub>UP</sub> power function turns on the port power by ramping up the current that is being delivered to the load in a controlled fashion. The output current ramps from 0 mA to I<sub>MAX</sub> (typically 425 mA) in approximately 500  $\mu$ s. Figure 14 shows the output voltage and current turning on for a 250-mA load.



t – Time – 100  $\mu \text{s/div.}$ 

Figure 14.




SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### POWER MANAGEMENT MODE FUNCTIONAL DESCRIPTION

### PMM R<sub>DWN</sub>

PMM R<sub>DWN</sub> function turns off the port power by ramping down the current in a controlled fashion. The output current ramps from  $I_{MAX}$  (typically 425 mA) to 0 mA in approximately 500  $\mu$ s. Figure 15 shows the output voltage and current shutting down for a 250-mA load.



t – Time – 100  $\mu \text{s/div.}$ 

Figure 15.

SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### MISCELLANEOUS FUNCTIONAL DESCRIPTION

#### Watch Dog Timer

TPS2384 has two watchdog timers. One monitors the I<sup>2</sup>C clock and the other monitors the internal clock. When auto mode is selected and the watchdog timer has not been disable only the internal clock is monitored. When in power management mode and the watchdog timer has not been disabled then both the I<sup>2</sup>C and internal clocks are monitored. If there is no I<sup>2</sup>C clock activity for approximately 2 seconds then all ports are disable. There are three means to enable ports after a I<sup>2</sup>C clock fault and they are:

- 1. Hard power reset
- 2. PORB pulse
- 3. Writing a software reset to the common control register.

In both auto mode and power management mode if the internal oscillator is lost for more than 20 ms all ports are disabled.

Loss of these signals is considered catastrophe since the system loses its ability to talk to each port. Therefore the WD timers disabling all ports protects the system from potential catastrophe failures.

This function can be easily over ridden by setting the WD\_DIS pin high.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### **MISCELLANEOUS FUNCTIONAL DESCRIPTION**

### I<sup>2</sup>C Interface Description

The serial interface used in the TPS2384 is a standard 2-wire I<sup>2</sup>C slave architecture. The standard bi-directional SDA lines of the I<sup>2</sup>C architecture are broken out into independent input and output data paths. This feature simplifies earth grounded controller applications that require opto-isolators to keep the 48-V return of the Ethernet power system floating. For applications where opto-isolation is not required, the bi-directional property of the SDA line can be restored by connecting SDA\_I to SDA\_O. The SCL line is a unidirectional input only line as the TPS2384 is always accessed as a slave device and it never masters the bus.

Data transfers that require a data-flow reversal on the SDA line are 4-byte operations. This occurs during a TPS2384 port read cycle where a slave address byte is sent, followed by a port/register address byte write. A second slave address byte is sent followed by the data byte read using the port/register setup from the second byte in the sequence.

The I<sup>2</sup>C interface and the port read write registers are held in active reset until all input voltages are within specifications (V10, V6.3, V3.3 & V2.5) and the internal POR timer has timed out (see electrical specifications).

The I<sup>2</sup>C read cycle consists of the following steps 1 through 14 and is shown in Figure 20:

- 1. Start Sequence (S)
- 2. Device address field
- 3. Write
- 4. Acknowledge
- 5. Register/Port address
- 6. Acknowledge
- 7. Stop
- 8. Start
- 9. Device address field
- 10. Read
- 11. Aknowledge
- 12. Data Transfer
- 13. Acknowledge
- 14. Stop



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### MISCELLANEOUS FUNCTIONAL DESCRIPTION

Data write transfers to the TPS2384 do not require a data-flow reversal and as such only a 3-byte operation is required. The sequence in this case would be to send a slave device address byte, followed by a write of the port/register address followed by a write of the data byte for the addressed port.

The I<sup>2</sup>C write cycle consists of the following steps 1 through 9 and is also shown in Figure 20:

- 1. Start Sequence (S)
- 2. Device address field
- 3. Write
- 4. Acknowledge
- 5. Register/Port address
- 6. Acknowledge
- 7. Data for TPS2384
- 8. Acknowledge
- 9. Stop

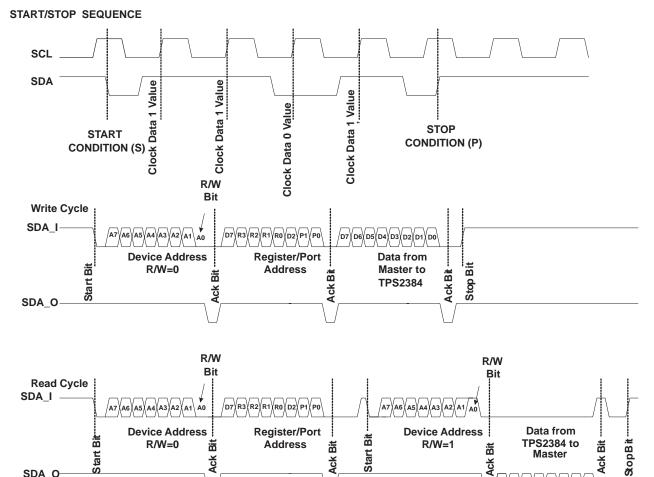
#### Start/Stop

The high-to-low transition of SDA while SCL is high defines the start condition. The low to high transition of SDA while SCL is high defines the stop condition. The master device initiates all start and stop conditions.

A first serial packet enclosed within start and stop bits, consists of a 7-bit address field, read/write bit, and the acknowledge bit. The acknowledge bit is always generated by the device receiving the address or data field. Five of the seven address bits are used by the TPS2384. The sixth and seventh bits are placeholders for future expansion. During a write operation to the TPS2384 from the master device, the data field is 8 bits long. During a read operation where the TPS2384 is writing to the master device, the data field is also 8 bits long.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005


tart

SDA\_O

### **MISCELLANEOUS FUNCTIONAL DESCRIPTION**

#### **Chip Address**

The address field of the TPS2384 is 8 bits long and contains 5 bits of device address select and a read/write bit as and two spare bits per Table 1. The leading two bits are not used and are reserved for future port expansion. The five device address select bits follow this plan. These bits are compared against the hard-wired state of the corresponding device address select pins (A1-A5). When the field contents are equivalent to the pin logic states, the device is addressed. These bits are followed by LSB bit, which is used to set the read or write condition (1 for read and 0 for write). Following a start condition and an address field, the TPS2384 responds with an acknowledge by pulling the SDA line low during the 9th clock cycle if the address field is equivalent to the value programmed by the pins. The SDA line remains a stable low while the 9<sup>th</sup> clock pulse is high.



### Figure 16. I<sup>2</sup>C Read/Write Cycles

Ack

Ack

D7 06 05 04 03 02 01 00

Ack

### **MISCELLANEOUS FUNCTIONAL DESCRIPTION**

### **Chip Addressing**

Table 1 shows the bit assignments during the addressing cycle.

#### Table 1. Address Selection Field

| BIT | FUNCTION                                 |
|-----|------------------------------------------|
| A7  | Future expansion (not used)              |
| A6  | Future expansion (not used)              |
| A5  | Device address. Compared with pin A5     |
| A4  | Device address. Compared with pin A4     |
| A3  | Device address. Compared with pin A3     |
| A2  | Device address. Compared with pin A2     |
| A1  | Device address LSB. Compared with pin A1 |
| A0  | Read/Write                               |

#### **Port/Register Cycle**

After the chip address cycle, the TPS2384 accepts eight bits of port/register select data as defined in Table 2. The SCL line high-to-low transition after the eighth data bit then latches the selection of the appropriate internal register for the follow on data read or write operation. After latching the eight-bit data field, the TPS2384 pulls the SDA line low for one clock cycle, for the acknowledge pulse.

#### Data Write Cycle

For a data write sequence, after the Port/Register address cycle, the TPS2384 accepts the eight bits of data as defined in the tables below. The data is latched into the previously selected Write Register, and the TPS2384 generates a data acknowledge pulse by pulling the SDA line low for one clock cycle. Common register functions act on all ports simultaneously. Per port registers are specific to the target port only.

To reset the interface, the host or master subsequently generates a stop bit by releasing the SDA line during the clock-high portion of an SCL pulse.

#### Data Read Cycle

For a data read sequence, after the register acknowledge bit, the master device generates a stop condition. This is followed by a second start condition, and retransmitting the device address as described in chip address above. For this cycle, however, the R/W bit is set to a 1 to signal the read operation. The TPS2384 again responds with an acknowledge pulse. The address acknowledge is then followed by sequentially presenting each of the eight data bits on the SDA line (MSB first), to be read by the host device on the rising edges of SCL. After eight bits are transmitted, the host acknowledges by pulling the SDA line high for one clock pulse. The completed data transfer is terminated with the host generating a stop condition.



### MISCELLANEOUS FUNCTIONAL DESCRIPTION

#### Table 2. Common Write Register Port /Register Addressing

| BIT | FUNCTION              | STATE                                                                                                                                                                                                                                                                                                      | PRESET STATE |
|-----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Future expansion      |                                                                                                                                                                                                                                                                                                            | 0            |
| D6  | Register select MSB   | 0000 = common read – port fault status, ID and rev<br>0001 = common control write – software reset, ports shutdown and ac disc<br>0010 = write control reg 1 – function calls and discovery, disable fault disable<br>0011 = write control reg 2 – classify current limit, power over I cntrl & AD abort   |              |
| D5  | Register select Bit 3 | 0100 = read status reg 1 – fault status, class Infor, power Infor<br>0101 = read status reg 2 – detection status<br>0110 = read R result reg 1 – A/D resistor register (lower bits)<br>0111 = read R result reg 2 – A/D resistor register (upper bits)                                                     | 0000         |
| D4  | Register select Bit 2 | <ul> <li>1000 = read V result reg 1 – A/D voltage register (lower bits)</li> <li>1001 = read V result reg 2 – A/D voltage register (upper bits)</li> <li>1010 = read I result reg 1 – A/D current register (lower bits)</li> <li>1011 = read I result reg 2 – A/D current register (upper bits)</li> </ul> |              |
| D3  | Register select LSB   | <ul> <li>1100 = read T result reg 1 – A/D temperature register (lower bits)</li> <li>1101 = read T result reg 2 – A/D temperature register (upper bits)</li> <li>1110 = spare</li> <li>1111 = common write – test disable timer, discovery loop</li> </ul>                                                 |              |
| D2  | Future expansion      |                                                                                                                                                                                                                                                                                                            | 0            |
| D1  | Port address MSB      | 00 = port 1<br>01 = port 2                                                                                                                                                                                                                                                                                 | 00           |
| D0  | Port address          | 10 = port 3<br>11 = port 4                                                                                                                                                                                                                                                                                 | 00           |

### Table 3. Common Register Read Register, Address = 0000 Port Fault Status & Chip ID/Rev

| BIT | FUNCTION                       | STATE                                            | PRESET STATE |
|-----|--------------------------------|--------------------------------------------------|--------------|
| D7  | Port 4 general<br>Fault status | 0 = no fault<br>1 = port fault See Notes 1 and 2 | 0            |
| D6  | Port 3 general<br>Fault status | 0 = no fault<br>1 = port fault See Notes 1 and 2 | 0            |
| D5  | Port 2 general<br>Fault status | 0 = no fault<br>1 = port fault See Notes 1 and 2 | 0            |
| D4  | Port 1 general<br>Fault status | 0 = no fault<br>1 = port fault See Notes 1 and 2 | 0            |
| D3  | Chip rev                       | 00 = rev -<br>01 = rev 1                         | 00           |
| D2  | Chip lev                       | 10 = rev 2<br>11 = rev 3                         | 00           |
| D1  |                                | 00 = TPS2383<br>01= TPS2383A                     | 10           |
| D0  | Chip ID                        | 10 = TPS2384<br>11 = TPS2384A                    | 10           |

NOTES: 1. PMM faults cleared by disable function.

2. AM faults cleared by TED timer.



### **MISCELLANEOUS FUNCTIONAL DESCRIPTION**

### Table 4. Common Register Write Register, Address = 1111 Test Register

| BIT | FUNCTION              | STATE                                                                     | PRESET STATE |
|-----|-----------------------|---------------------------------------------------------------------------|--------------|
| D7  | Spare                 |                                                                           | 0            |
| D6  | Thermal Shutdown Test | 0 = normal operation<br>1 = force TSD condition (all ports off)           | 0            |
| D5  | POR disable           | 0 = normal POR timing<br>1 = force POR to a non-reset state               | 0            |
| D4  | Discovery timers      | 0 = normal (4-ms discovery 1 & discovery 2)<br>1 = timers disable         | 0            |
| D3  | Discovery 1 & 2       | 0 = normal operation<br>1 = all 4-port discovery 1 and discovery 2 – halt | 0            |
| D2  | DC disconnect timer   | 0 = normal operation<br>1 = 300-ms disconnect timer disable               | 0            |
| D1  | TED timer             | 0 = normal operation<br>1 = 750-ms TED timer disable                      | 0            |
| D0  | Spare                 |                                                                           | 0            |

### Table 5. Common Control RegisterWrite Register, address = 0001

| BIT | FUNCTION                     | STATE                                                                       | PRESET STATE |
|-----|------------------------------|-----------------------------------------------------------------------------|--------------|
| D7  | Spare                        |                                                                             | 0            |
| D6  | Spare                        |                                                                             | 0            |
| D5  | TSD fault                    | 0 = no fault<br>1 = faults disable                                          | 0            |
| D4  | AC high                      | 0 = off<br>1 = AC_HI driver on                                              | 0            |
| D3  | AC low                       | 0 = off<br>1 = AC_LO driver on                                              | 0            |
| D2  | Over/under voltage<br>faults | 0 = no fault<br>1 = faults disable                                          | 0            |
| D1  | All Ports Disable            | 0 = normal operation<br>1 = all ports shut down (no ramp)                   | 0            |
| D0  | Software RESET               | 0 = normal operation<br>1 = reset all circuits and start a POR timing cycle | 0            |



### MISCELLANEOUS FUNCTIONAL DESCRIPTION

### Table 6. Individual Port Write Control Register 1 Address 0010 (One Per Port)

| Bit | FUNCTION                | State                                                                                                                                                                      | PRESET STATE |
|-----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Spare                   |                                                                                                                                                                            | 0            |
| D6  | Spare                   |                                                                                                                                                                            | 0            |
| D5  | Discovery Fault Disable | 0 = normal mode<br>1 = disable internal discovery fault limits (19 k $\Omega$ to 29.5 k $\Omega$ )                                                                         | 0            |
| D4  | Disconnect Disable      | 0 = normal mode<br>1 = disable the effect of the logic signal from the disconnect detection circuits<br>(used for test only)                                               | 0            |
| D3  | Function Bit 3          | 0000 = disable function (power down & reset all functions)<br>0001 = discovery 1 function<br>0010 = discovery 2 function<br>0011 = port voltage sample function (V sample) |              |
| D2  | Function Bit 2          | 0100 = legacy detection function<br>0101 = classification function<br>0110 = ramp up/power function (rup pwr)<br>0111 = continuous sample function (C sample)              | 0000         |
| D1  | Function Bit 1          | 1000 = ramp power down function (Rdwn)<br>1001 = ac low<br>1010 = ac high<br>1011 = port current sample function (I sample)                                                |              |
| D0  | Function Bit 0          | 1100 = die temperature sample function (T sample)<br>1101 = spare<br>1110 = spare<br>1111 = spare                                                                          |              |

Table 7. Individual Port Write Control 2 Write register, address = 0011 (One Per Port)

| BIT | FUNCTION                                             | STATE                                                                                                                                                         | PRESET STATE |
|-----|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Spare                                                |                                                                                                                                                               | 0            |
| D6  | Spare                                                |                                                                                                                                                               | 0            |
| D5  | Spare                                                |                                                                                                                                                               | 0            |
| D4  | Port Enable                                          | 0 = normal<br>1 = port disable                                                                                                                                | 0            |
| D3  | A/D Start                                            | 0 = normal<br>1 = start A/D (self clearing)                                                                                                                   | 0            |
| D2  | A/D Abort                                            | 0 = normal<br>1 = abort                                                                                                                                       | 0            |
| D1  | Power Mode<br>Class Over Current<br>Threshold Enable | 0 = full current (375 mA) over current threshold<br>1 = deny current beyond class 1 (90 mA) or class 2 (160 mA) depending on class<br>contents in register 4. | 0            |
| D0  | Spare                                                |                                                                                                                                                               | 0            |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

### **MISCELLANEOUS FUNCTIONAL DESCRIPTION**

### Table 8. Port Status Port 1 through 4 Read Register, address = 0100 (One Per Port)

| BIT | FUNCTION           | STATE                                                                                         | PRESET STATE |
|-----|--------------------|-----------------------------------------------------------------------------------------------|--------------|
| D7  | Discovery Status   | 0 = normal<br>1 = discovery fail                                                              | 0            |
| D6  | Function Done Bit  | 0 = normal<br>1 = function complete (self clearing by new a function write)                   | 0            |
| D5  | Port Class         | 000 = class 0<br>                                                                             | 000          |
| D4  | Port Class         | 010 = class 2                                                                                 | 000          |
| D3  | Port Class         | ☐ 011 = class 3<br>100 = class 4                                                              |              |
| D2  | Fault status (MSB) | 000 = no faults<br>001 = UV/OV fault<br>- 010 = thermal fault                                 |              |
| D1  | Fault status       | 011 = overload current > 50-ms fault<br>100 = load disconnect                                 | 000          |
| D0  | Fault status (LSB) | 101 = reserved for future         110 = reserved for future         111 = reserved for future |              |

#### Table 9. Port Mode Status Port 1 through 4 Read Register, address = 0101 (One Per Port)

| BIT | FUNCTION               | STATE                                                    | PRESET STATE |
|-----|------------------------|----------------------------------------------------------|--------------|
| D7  | Spare                  |                                                          | 0            |
| D6  | Spare                  |                                                          | 0            |
| D5  | Spare                  |                                                          | 0            |
| D4  | Watch dog timer        | 0 = not active<br>1 = active                             | 0            |
| D3  | A/D status             | 0 = not active<br>1 = active                             | 0            |
| D2  | Detection status (MSB) | 000 = disable<br>001 = searching<br>010 = power delivery |              |
| D1  | Detection status       | 011 = fault<br>100 = test                                | 000          |
| D0  | Detection status (LSB) | 101= other fault<br>110 = undefined<br>111 = undefined   |              |



### MISCELLANEOUS FUNCTIONAL DESCRIPTION

### A/D Register (Resistance, Voltage, Current & Temperature)

#### Table 10. Analog to Digital Lower Bits Resistor Register / Read Register, Address = 0110 (One Per Port)

| Bit | Function  | State          | PRESET STATE |
|-----|-----------|----------------|--------------|
| D7  | A/D bit 7 |                |              |
| D6  | A/D bit 6 |                |              |
| D5  | A/D bit 5 |                |              |
| D4  | A/D bit 4 |                |              |
| D3  | A/D bit 3 | A/D lower bits | 0            |
| D2  | A/D bit 2 |                |              |
| D1  | A/D bit 1 |                |              |
| D0  | A/D bit 0 |                |              |

# Table 11. Common Analog to Digital Upper Bits Resistor Register/Read Register, Address = 0111 (One Per Port)

| Bit | Function                      | State                                                                                                                                                                                  | PRESET STATE |
|-----|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Resistor measurement complete | 0 = measurement active (bit set low at the start of discovery 1 or discovery 2)<br>1 = measurement complete (bit set high after A/D is completed during discovery 1<br>or discovery 2) | 0            |
| D6  | A/D bit 14                    |                                                                                                                                                                                        |              |
| D5  | A/D bit 13                    |                                                                                                                                                                                        |              |
| D4  | A/D bit 12                    |                                                                                                                                                                                        |              |
| D3  | A/D bit 11                    | A/D upper bits                                                                                                                                                                         | 0            |
| D2  | A/D bit 10                    |                                                                                                                                                                                        |              |
| D1  | A/D bit 9                     | ]                                                                                                                                                                                      |              |
| D0  | A/D bit 8                     |                                                                                                                                                                                        |              |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

## MISCELLANEOUS FUNCTIONAL DESCRIPTION

### Table 12. Analog to Digital Lower Bits Voltage Register/Read Register, Address = 1000 (One Per Port)

| Bit | Function  | State          | PRESET STATE |
|-----|-----------|----------------|--------------|
| D7  | A/D bit 7 |                |              |
| D6  | A/D bit 6 |                |              |
| D5  | A/D bit 5 |                |              |
| D4  | A/D bit 4 |                |              |
| D3  | A/D bit 3 | A/D lower bits | 0            |
| D2  | A/D bit 2 |                |              |
| D1  | A/D bit 1 |                |              |
| D0  | A/D bit 0 |                |              |

# Table 13. Common Analog to Digital Upper Bits Voltage Register/Read Register, Address = 1001 (One Per Port)

| BIT | FUNCTION                      | STATE                                                                                                                                                                    | PRESET STATE |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Voltage measure com-<br>plete | 0 = measurement active (bit set low when A/D begins a voltage measurement)<br>1 = measurement complete (bit set high after A/D has completed a voltage mea-<br>surement) | 0            |
| D6  | A/D bit 14                    |                                                                                                                                                                          |              |
| D5  | A/D bit 13                    |                                                                                                                                                                          |              |
| D4  | A/D bit 12                    |                                                                                                                                                                          |              |
| D3  | A/D bit 11                    | A/D upper bits                                                                                                                                                           | 0            |
| D2  | A/D bit 10                    |                                                                                                                                                                          |              |
| D1  | A/D bit 9                     |                                                                                                                                                                          |              |
| D0  | A/D bit 8                     |                                                                                                                                                                          |              |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

## MISCELLANEOUS FUNCTIONAL DESCRIPTION

### Table 14. Analog to Digital Lower Bits Current Register/Read Register, Address = 1010 (One per port)

| BIT | FUNCTION  | STATE          | PRESET STATE |
|-----|-----------|----------------|--------------|
| D7  | A/D bit 7 |                |              |
| D6  | A/D bit 6 |                |              |
| D5  | A/D bit 5 |                |              |
| D4  | A/D bit 4 |                |              |
| D3  | A/D bit 3 | A/D lower bits | 0            |
| D2  | A/D bit 2 |                |              |
| D1  | A/D bit 1 |                |              |
| D0  | A/D bit 0 |                |              |

# Table 15. Common Analog to Digital Upper Bits Current Register/Read Register, Address = 1011 (One Per Port)

| BIT | FUNCTION                      | STATE                                                                                                                                                                    | PRESET STATE |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Current Measure Com-<br>plete | 0 = measurement active (bit set low when A/D begins a current measurement)<br>1 = measurement complete (bit set high after A/D has completed a current mea-<br>surement) | 0            |
| D6  | A/D bit 14                    |                                                                                                                                                                          |              |
| D5  | A/D bit 13                    |                                                                                                                                                                          |              |
| D4  | A/D bit 12                    |                                                                                                                                                                          |              |
| D3  | A/D bit 11                    | A/D upper bits                                                                                                                                                           | 0            |
| D2  | A/D bit 10                    |                                                                                                                                                                          |              |
| D1  | A/D bit 9                     |                                                                                                                                                                          |              |
| D0  | A/D bit 8                     |                                                                                                                                                                          |              |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

## MISCELLANEOUS FUNCTIONAL DESCRIPTION

# Table 16. Analog to Digital Lower Bits Temperature Register/Read Register, Address = 1100 (One Per Port)

| BIT | FUNCTION  | STATE          | PRESET STATE |
|-----|-----------|----------------|--------------|
| D7  | A/D bit 7 |                |              |
| D6  | A/D bit 6 |                |              |
| D5  | A/D bit 5 |                |              |
| D4  | A/D bit 4 |                |              |
| D3  | A/D bit 3 | A/D lower bits | 0            |
| D2  | A/D bit 2 |                |              |
| D1  | A/D bit 1 |                |              |
| D0  | A/D bit 0 |                |              |

# Table 17. Common Analog to Digital Upper Bits Temperature Register/Read Register, Address = 1101 (One Per Port)

| BIT | FUNCTION                        | STATE                                                                                                                                                                                                 | PRESET STATE |
|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D7  | Temperature Measure<br>Complete | <ul> <li>0 = measurement active (bit set low when A/D begins a temperature measurement)</li> <li>1 = measurement complete (bit set high after A/D has completed a temperature measurement)</li> </ul> | 0            |
| D6  | A/D bit 14                      |                                                                                                                                                                                                       |              |
| D5  | A/D bit 13                      |                                                                                                                                                                                                       |              |
| D4  | A/D bit 12                      |                                                                                                                                                                                                       |              |
| D3  | A/D bit 11                      | A/D upper bits                                                                                                                                                                                        | 0            |
| D2  | A/D bit 10                      |                                                                                                                                                                                                       |              |
| D1  | A/D bit 9                       |                                                                                                                                                                                                       |              |
| D0  | A/D bit 8                       |                                                                                                                                                                                                       |              |



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

## **TPS 2384 AC DRIVE APPLICATION SCHEMATIC**

## AC\_Hi & Low W/O External FET Configurations

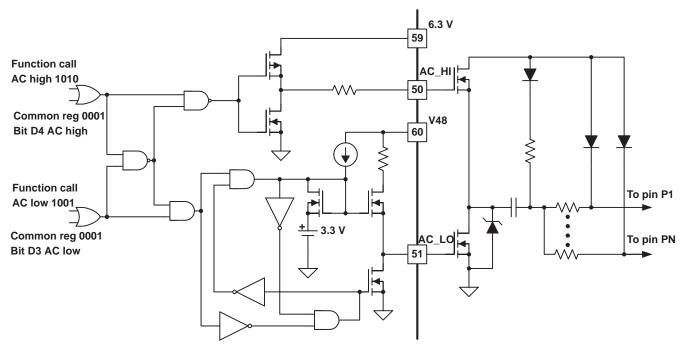
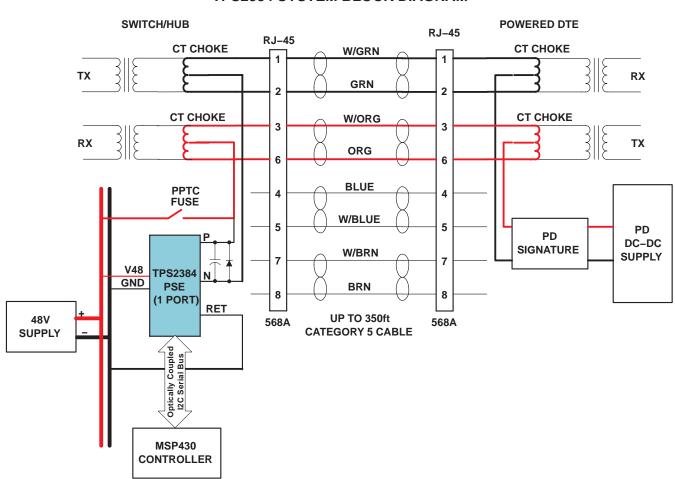




Figure 17.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005



**TPS2384 SYSTEM BLOCK DIAGRAM** 

Figure 18.



SLUS634B - NOVEMBER 2004 - REVISED MAY 2005

## TPS2384 BASIC 4 PORT (PMM) ISOLATED CONFIGURATION WITH AC DISCONNECT

TPS2384 basic 4-port isolated configuration with ac disconnect.

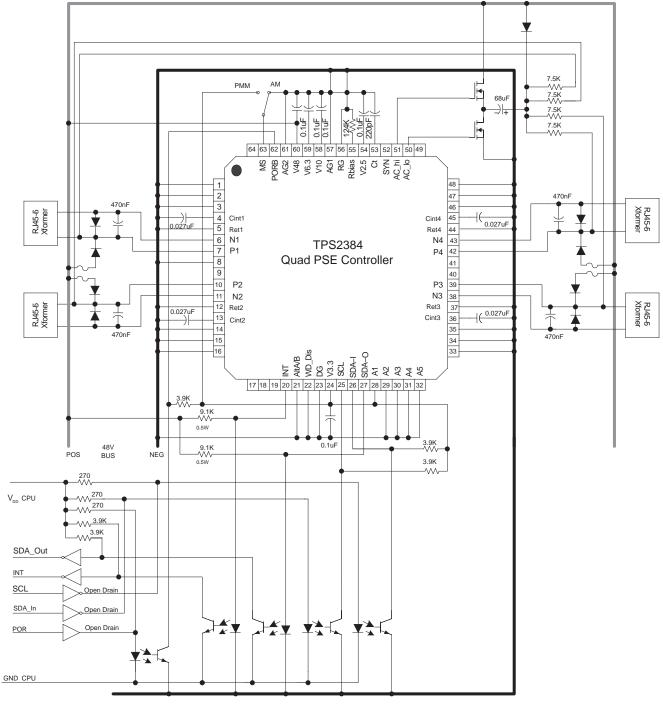



Figure 19.





## PACKAGE OPTION ADDENDUM

14-Mar-2006

#### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| TPS2384PAP       | ACTIVE                | HTQFP           | PAP                | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PAPG4     | ACTIVE                | HTQFP           | PAP                | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PAPR      | ACTIVE                | HTQFP           | PAP                | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PAPRG4    | ACTIVE                | HTQFP           | PAP                | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PJD       | ACTIVE                | HTQFP           | PJD                | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PJDG4     | ACTIVE                | HTQFP           | PJD                | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PJDR      | ACTIVE                | HTQFP           | PJD                | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| TPS2384PJDRG4    | ACTIVE                | HTQFP           | PJD                | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

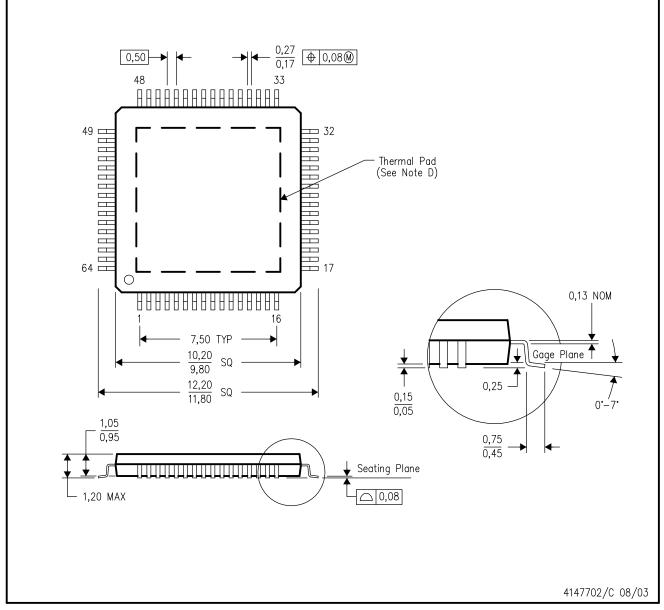
<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PAP (S-PQFP-G64)

PowerPAD<sup>™</sup> PLASTIC QUAD FLATPACK

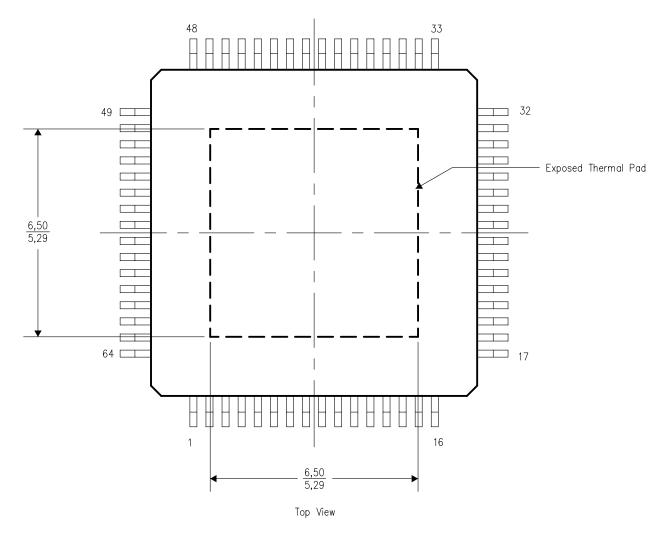


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

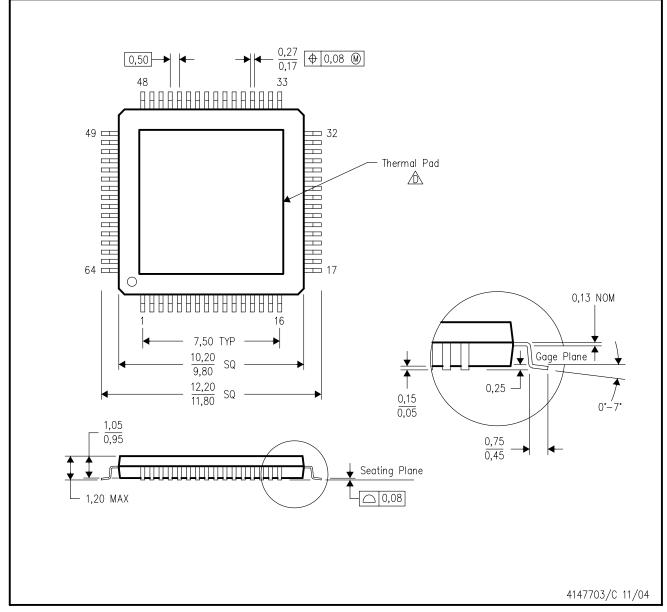



#### TEXAS INSTRUMENTS www.ti.com

## THERMAL PAD MECHANICAL DATA PAP (S-PQFP-G64)

#### THERMAL INFORMATION

This PowerPAD<sup>™</sup> package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. When the thermal pad is soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground or power plane (whichever is applicable), or alternatively, a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions



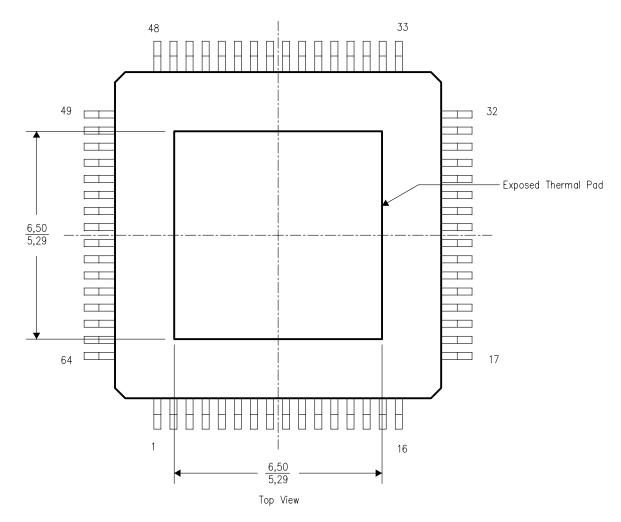


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>. See the product data sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.




#### TEXAS INSTRUMENTS www.ti.com

#### THERMAL INFORMATION

This PowerPAD<sup>™</sup> package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

#### Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265