

CY62256

# 256K (32K x 8) Static RAM

### **Features**

• Temperature Ranges

Commercial: 0°C to 70°C
 Industrial: -40°C to 85°C
 Automotive: -40°C to 125°C

• High speed: 55 ns and 70 ns

Voltage range: 4.5V-5.5V operation

• Low active power (70 ns, LL version, Com'l and Ind'l)

— 275 mW (max.)

• Low standby power (70 ns, LL version, Com'l and Ind'l)

— 28 μW (max.)

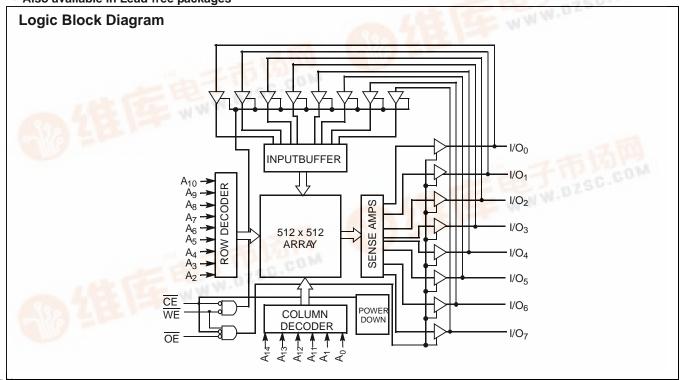
• Easy memory expansion with CE and OE features

• TTL-compatible inputs and outputs

Automatic power-down when deselected

CMOS for optimum speed/power

Package available in a standard 450-mil-wide (300-mil-body width) 28-lead narrow SOIC, 28-lead TSOP-1, 28-lead reverse TSOP-1, and 600-mil 28-lead PDIP packages


## Functional Description[1]

The CY62256 is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected.

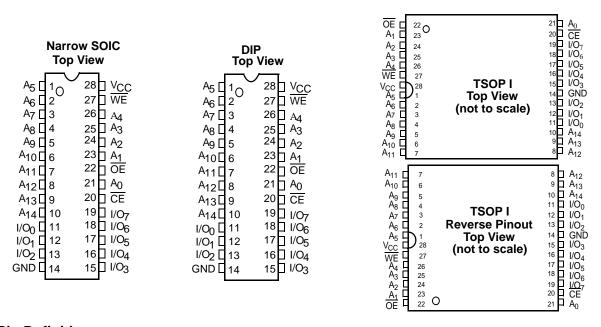
An active LOW write enable signal ( $\overline{\text{WE}}$ ) controls the writing/reading operation of the memory. When  $\overline{\text{CE}}$  and  $\overline{\text{WE}}$  inputs are both LOW, data on the eight data input/output pins (I/O0 through I/O7) is written into the memory location addressed by the address present on the address pins (A0 through A14). Reading the device is accomplished by selecting the device and enabling the outputs,  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$  active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Also available in Lead-free packages



For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.


upress Samiconductor Corporation • 108 Champion Court • San Jose CA 95134 • 408-043-29



## **Product Portfolio**

|                           |               |      |                     |            |       |                                                           | Power Dis | sipation            |      |
|---------------------------|---------------|------|---------------------|------------|-------|-----------------------------------------------------------|-----------|---------------------|------|
| V <sub>CC</sub> Range (V) |               |      |                     | <b>V</b> ) | Speed | Operating, I <sub>CC</sub> Standby, I <sub>SB2</sub> (μΑ) |           |                     |      |
| Product                   |               | Min. | Typ. <sup>[2]</sup> | Max.       | (ns)  | <b>Typ.</b> <sup>[2]</sup>                                | Max.      | Typ. <sup>[2]</sup> | Max. |
| CY62256                   | Commercial    | 4.5  | 5.0                 | 5.5        | 70    | 28                                                        | 55        | 1                   | 5    |
| CY62256L                  | Com'l / Ind'l |      |                     |            | 55/70 | 25                                                        | 50        | 2                   | 50   |
| CY62256LL                 | Commercial    |      |                     |            | 70    | 25                                                        | 50        | 0.1                 | 5    |
| CY62256LL                 | Industrial    |      |                     |            | 55/70 | 25                                                        | 50        | 0.1                 | 10   |
| CY62256LL                 | Automotive    |      |                     |            | 55    | 25                                                        | 50        | 0.1                 | 15   |

## **Pin Configurations**



## **Pin Definitions**

| Pin Number      | Туре          | Description                                                                                                                                                                              |  |
|-----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1–10, 21, 23–26 | Input         | A <sub>0</sub> -A <sub>14</sub> . Address Inputs                                                                                                                                         |  |
| 11–13, 15–19,   | Input/Output  | I/O <sub>0</sub> -/O <sub>7</sub> . Data lines. Used as input or output lines depending on operation                                                                                     |  |
| 27              | Input/Control | <b>WE</b> . When selected LOW, a WRITE is conducted. When selected HIGH, a READ i conducted                                                                                              |  |
| 20              | Input/Control | CE. When LOW, selects the chip. When HIGH, deselects the chip                                                                                                                            |  |
| 22              | Input/Control | <b>OE</b> . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins |  |
| 14              | Ground        | GND. Ground for the device                                                                                                                                                               |  |
| 28              | Power Supply  | V <sub>CC</sub> . Power supply for the device                                                                                                                                            |  |

#### Note

<sup>2.</sup> Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25°C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.



## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Power Applied .....-55°C to +125°C Supply Voltage to Ground Potential (Pin 28 to Pin 14) ......-0.5V to +7.0V DC Voltage Applied to Outputs in High-Z State  $^{[3]}$  ......-0.5V to  $\rm V_{CC}$  + 0.5V DC Input Voltage<sup>[3]</sup>.....-0.5V to  $V_{CC}$  + 0.5V

| Output Current into Outputs (LOW)                      | 20 mA    |
|--------------------------------------------------------|----------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V  |
| Latch-up Current                                       | > 200 mA |

## **Operating Range**

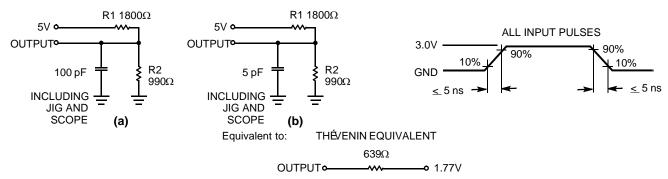
| Range      | Ambient Temperature (T <sub>A</sub> ) <sup>[4]</sup> | V <sub>CC</sub> |
|------------|------------------------------------------------------|-----------------|
| Commercial | 0°C to +70°C                                         | 5V ± 10%        |
| Industrial | −40°C to +85°C                                       | 5V ± 10%        |
| Automotive | −40°C to +125°C                                      | 5V ± 10%        |

## **Electrical Characteristics** Over the Operating Range

|                  |                                    |                                                               |           | С                          | CY62256- |                          | С                          | CY62256-70 |                          |    |
|------------------|------------------------------------|---------------------------------------------------------------|-----------|----------------------------|----------|--------------------------|----------------------------|------------|--------------------------|----|
| Parameter        | Description                        | Test Conditions                                               | Min.      | <b>Typ.</b> <sup>[2]</sup> | Max.     | Min.                     | <b>Typ.</b> <sup>[2]</sup> | Max.       | Unit                     |    |
| V <sub>OH</sub>  | Output HIGH Voltage                | $V_{CC} = Min., I_{OH} = -1.0 \text{ m/s}$                    | 4         | 2.4                        |          |                          | 2.4                        |            |                          | V  |
| V <sub>OL</sub>  | Output LOW Voltage                 | $V_{CC} = Min., I_{OL} = 2.1 mA$                              |           |                            |          | 0.4                      |                            |            | 0.4                      | V  |
| V <sub>IH</sub>  | Input HIGH Voltage                 |                                                               |           | 2.2                        |          | V <sub>CC</sub><br>+0.5V | 2.2                        |            | V <sub>CC</sub><br>+0.5V | V  |
| V <sub>IL</sub>  | Input LOW Voltage                  |                                                               |           | -0.5                       |          | 0.8                      | -0.5                       |            | 0.8                      | V  |
| I <sub>IX</sub>  | Input Leakage Current              | $GND \leq V_I \leq V_CC$                                      |           | -0.5                       |          | +0.5                     | -0.5                       |            | +0.5                     | μΑ |
| I <sub>OZ</sub>  | Output Leakage Current             | $GND \le V_O \le V_{CC}$ , Output Disabled                    |           | -0.5                       |          | +0.5                     | -0.5                       |            | +0.5                     | μА |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply   | $V_{CC} = Max., I_{OUT} = 0 mA,$                              |           |                            | 28       | 55                       |                            | 28         | 55                       | mA |
|                  | Current                            | $f = f_{MAX} = 1/t_{RC}$                                      | L         |                            | 25       | 50                       |                            | 25         | 50                       | mA |
|                  |                                    |                                                               | LL        |                            | 25       | 50                       |                            | 25         | 50                       | mA |
| I <sub>SB1</sub> | Automatic CE                       | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,                  |           |                            | 0.5      | 2                        |                            | 0.5        | 2                        | mA |
|                  | Power-down Current—<br>TTL Inputs  | $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$ ,<br>$f = f_{MAX}$ | L         |                            | 0.4      | 0.6                      |                            | 0.4        | 0.6                      | mA |
|                  | p a.to                             | LL                                                            |           |                            | 0.3      | 0.5                      |                            | 0.3        | 0.5                      | mA |
| I <sub>SB2</sub> | Automatic CE                       | Max. V <sub>CC</sub> ,                                        |           |                            | 1        | 5                        |                            | 1          | 5                        | mA |
|                  | Power-down Current—<br>CMOS Inputs | $CE \ge V_{CC} - 0.3V$<br>$V_{IN} \ge V_{CC} - 0.3V$ , or     | L         |                            | 2        | 50                       |                            | 2          | 50                       | μА |
|                  | ooopa.a                            | $V_{IN} \le 0.3V$ , f = 0                                     | LL        |                            | 0.1      | 5                        |                            | 0.1        | 5                        | μА |
|                  |                                    | LL -                                                          |           |                            | 0.1      | 10                       |                            | 0.1        | 10                       | μΑ |
|                  |                                    |                                                               | LL - Auto |                            | 0.1      | 15                       |                            |            | _                        | μΑ |

## Capacitance<sup>[5]</sup>

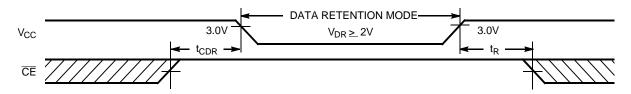
| Parameter        | Parameter Description |                                         | Max. | Unit |
|------------------|-----------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance     | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6    | pF   |
| C <sub>OUT</sub> | Output Capacitance    | $V_{CC} = 5.0V$                         | 8    | pF   |


### **Thermal Resistance**

| Parameter       | Description                                             | Test Conditions                                                           | DIP   | SOIC  | TSOP  | RTSOP | Unit |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------------|-------|-------|-------|-------|------|
| $\Theta_{JA}$   | Thermal Resistance (Junction to Ambient) <sup>[5]</sup> | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | 75.61 | 76.56 | 93.89 | 93.89 | °C/W |
| Θ <sub>JC</sub> | Thermal Resistance (Junction to Case) <sup>[5]</sup>    |                                                                           | 43.12 | 36.07 | 24.64 | 24.64 | °C/W |

- 3.  $V_{\rm IL}$  (min.) =  $-2.0{\rm V}$  for pulse durations of less than 20 ns. 4.  $T_{\rm A}$  is the "Instant-On" case temperature.
- 5. Tested initially and after any design or process changes that may affect these parameters.




## **AC Test Loads and Waveforms**



## **Data Retention Characteristics**

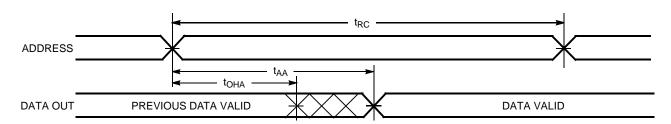
| Parameter                       | Description                        |              | Conditions <sup>[6]</sup>                             | Min.            | Typ. <sup>[2]</sup> | Max. | Unit |
|---------------------------------|------------------------------------|--------------|-------------------------------------------------------|-----------------|---------------------|------|------|
| $V_{DR}$                        | V <sub>CC</sub> for Data Retention |              |                                                       | 2.0             |                     |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current L           |              | $V_{CC} = 3.0V$ , $\overline{CE} \ge V_{CC} - 0.3V$ , |                 | 2                   | 50   | μΑ   |
|                                 |                                    | LL           | $V_{IN} \ge V_{CC} - 0.3V$ , or $V_{IN} \le 0.3V$     |                 | 0.1                 | 5    | μΑ   |
|                                 |                                    | LL - Ind'l   |                                                       |                 | 0.1                 | 10   | μА   |
|                                 |                                    | LL - Auto    |                                                       |                 | 0.1                 | 10   | μΑ   |
| t <sub>CDR</sub> <sup>[5]</sup> | Chip Deselect to Data Re           | tention Time |                                                       | 0               |                     |      | ns   |
| t <sub>R</sub> <sup>[5]</sup>   | Operation Recovery Time            | )            |                                                       | t <sub>RC</sub> |                     |      | ns   |

## **Data Retention Waveform**



#### Note:

6. No input may exceed V<sub>CC</sub> + 0.5V.




## Switching Characteristics Over the Operating Range<sup>[7]</sup>

|                                 |                                     | CY62  | 256–55 | CY62 |      |      |
|---------------------------------|-------------------------------------|-------|--------|------|------|------|
| Parameter                       | Description                         | Min.  | Max.   | Min. | Max. | Unit |
| Read Cycle                      |                                     | 1     | •      | •    | •    |      |
| t <sub>RC</sub>                 | Read Cycle Time                     | 55    |        | 70   |      | ns   |
| t <sub>AA</sub>                 | Address to Data Valid               |       | 55     |      | 70   | ns   |
| t <sub>OHA</sub>                | Data Hold from Address Change       | 5     |        | 5    |      | ns   |
| t <sub>ACE</sub>                | CE LOW to Data Valid                |       | 55     |      | 70   | ns   |
| t <sub>DOE</sub>                | OE LOW to Data Valid                |       | 25     |      | 35   | ns   |
| t <sub>LZOE</sub>               | OE LOW to Low-Z <sup>[8]</sup>      | 5     |        | 5    |      | ns   |
| t <sub>HZOE</sub>               | OE HIGH to High-Z <sup>[8, 9]</sup> |       | 20     |      | 25   | ns   |
| t <sub>LZCE</sub>               | CE LOW to Low-Z <sup>[8]</sup>      | 5     | 5      |      |      | ns   |
| t <sub>HZCE</sub>               | CE HIGH to High-Z <sup>[8, 9]</sup> |       | 20     |      | 25   | ns   |
| t <sub>PU</sub>                 | CE LOW to Power-up                  | 0     | 0      |      |      | ns   |
| t <sub>PD</sub>                 | CE HIGH to Power-down               |       | 55     |      | 70   | ns   |
| Write Cycle <sup>[10, 11]</sup> |                                     |       | •      | •    | •    |      |
| t <sub>WC</sub>                 | Write Cycle Time                    | 55    |        | 70   |      | ns   |
| t <sub>SCE</sub>                | CE LOW to Write End                 | 45    |        | 60   |      | ns   |
| t <sub>AW</sub>                 | Address Set-up to Write End         | 45    |        | 60   |      | ns   |
| t <sub>HA</sub>                 | Address Hold from Write End         | 0     |        | 0    |      | ns   |
| t <sub>SA</sub>                 | Address Set-up to Write Start       | 0     |        | 0    |      | ns   |
| t <sub>PWE</sub>                | WE Pulse Width                      | 40    |        | 50   |      | ns   |
| t <sub>SD</sub>                 | Data Set-up to Write End            | 25 30 |        | 30   |      | ns   |
| t <sub>HD</sub>                 | Data Hold from Write End            | 0 0   |        |      | ns   |      |
| t <sub>HZWE</sub>               | WE LOW to High-Z <sup>[8, 9]</sup>  |       | 20     |      | 25   | ns   |
| t <sub>LZWE</sub>               | WE HIGH to Low-Z <sup>[8]</sup>     | 5     |        | 5    |      | ns   |

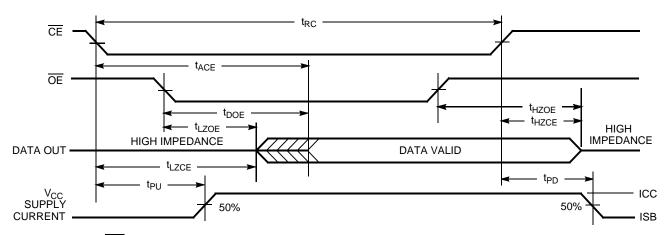
## **Switching Waveforms**

Read Cycle No. 1<sup>[12, 13]</sup>



#### Notes:

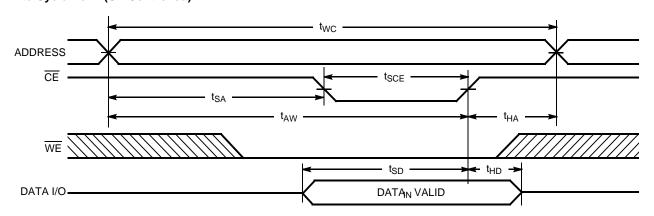
- Notes:


  7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $I_{OL}/I_{OH}$  and 100-pF load capacitance.

  8. At any given temperature and voltage condition,  $I_{HZCE}$  is less than  $I_{LZCE}$ ,  $I_{HZCE}$ , and  $I_{HZWE}$  are specified with  $I_{LZWE}$  are specified with  $I_{LZCE}$  and  $I_{HZWE}$  are specified with  $I_{LZCE}$  are specified with  $I_{LZCE}$  and  $I_{HZWE}$  are specified with  $I_{LZCE}$  are specified with  $I_{LZCE}$  and  $I_{HZWE}$  are specified with  $I_{LZCE}$  are specified with  $I_{LZCE}$  and  $I_{HZWE}$  are specified with  $I_{LZCE}$  are specified with  $I_{LZCE}$  and  $I_{HZWE}$  are specified with  $I_{LZWE}$  and  $I_{HZWE}$  and  $I_{LZWE}$  and  $I_{LZWE}$  and  $I_{LZWE}$  and  $I_{LZWE}$  are specified with  $I_{LZWE}$  and  $I_{LZWE}$  and  $I_{LZWE}$  are specified with  $I_{LZWE}$  are specified with  $I_{LZWE}$  are specified with  $I_{LZWE}$  are specified w




## Switching Waveforms (continued)


Read Cycle No.  $2^{[13, 14]}$ 



Write Cycle No. 1 (WE Controlled)[10, 15, 16]

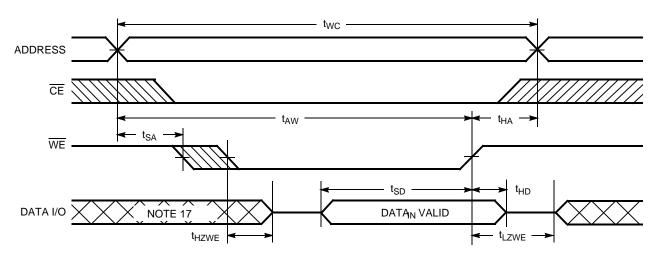


## Write Cycle No. 2 (CE Controlled)[10, 15, 16]



#### Notes:

- 14. Address valid prior to or coincident with  $\overline{\text{CE}}$  transition LOW.


  15. Data I/O is high impedance if  $\overline{\text{OE}} = \text{V}_{\text{IL}}$ .

  16. If  $\overline{\text{CE}}$  goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 17. During this period, the I/Os are in output state and input signals should not be applied.

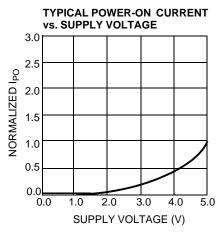


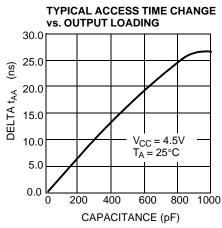
## Switching Waveforms (continued)

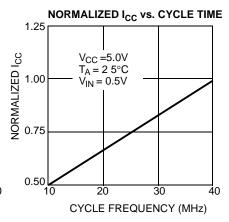
Write Cycle No. 3 ( $\overline{\text{WE}}$  Controlled,  $\overline{\text{OE}}$  LOW)[11, 16]






## Typical DC and AC Characteristics





**OUTPUT VOLTAGE (V)** 



## Typical DC and AC Characteristics (continued)



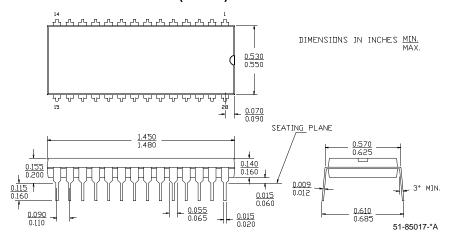




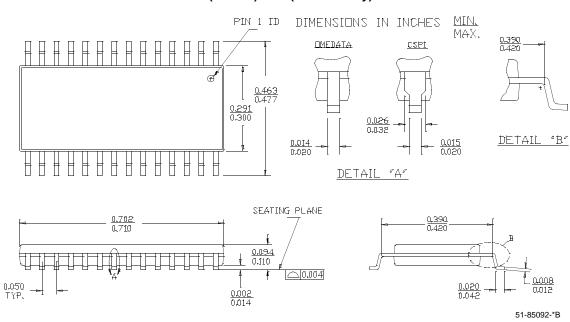
### **Truth Table**

| CE | WE | OE | Inputs/Outputs Mode |                     | Power                      |
|----|----|----|---------------------|---------------------|----------------------------|
| Н  | X  | Χ  | High-Z              | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out            | Read                | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In             | Write               | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High-Z              | Output Disabled     | Active (I <sub>CC</sub> )  |




## **Ordering Information**

| Speed<br>(ns) | Ordering Code    | Package<br>Name | Package Type                                         | Operating<br>Range |
|---------------|------------------|-----------------|------------------------------------------------------|--------------------|
| 55            | CY62256LL-55SNI  | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            | Industrial         |
|               | CY62256LL-55SNXI | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)  |                    |
|               | CY62256LL-55ZI   | Z28             | 28-lead Thin Small Outline Package                   |                    |
|               | CY62256LL-55ZXI  | Z28             | 28-lead Thin Small Outline Package (Pb-Free)         |                    |
|               | CY62256LL-55SNE  | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            | Automotive         |
|               | CY62256LL-55SNXE | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)  |                    |
|               | CY62256LL-55ZE   | Z28             | 28-lead Thin Small Outline Package                   |                    |
|               | CY62256LL-55ZXE  | Z28             | 28-lead Thin Small Outline Package (Pb-Free)         |                    |
|               | CY62256LL-55ZRE  | ZR28            | 28-lead Reverse Thin Small Outline Package           |                    |
|               | CY62256LL-55ZRXE | ZR28            | 28-lead Reverse Thin Small Outline Package (Pb-Free) |                    |
| 70            | CY62256-70SNC    | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            | Commercial         |
|               | CY62256L-70SNC   | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            |                    |
|               | CY62256L-70SNXC  | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)  |                    |
|               | CY62256LL-70SNC  | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            |                    |
|               | CY62256LL-70SNXC | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)  |                    |
|               | CY62256L-70SNI   | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            | Industrial         |
|               | CY62256L-70SNXI  | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)  |                    |
|               | CY62256LL-70SNI  | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC            |                    |
|               | CY62256LL-70SNXI | SN28            | 28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)  |                    |
|               | CY62256LL-70ZC   | Z28             | 28-lead Thin Small Outline Package                   | Commercial         |
|               | CY62256LL-70ZXC  | Z28             | 28-lead Thin Small Outline Package (Pb-Free)         |                    |
|               | CY62256LL-70ZI   | Z28             | 28-lead Thin Small Outline Package                   | Industrial         |
|               | CY62256LL-70ZXI  | Z28             | 28-lead Thin Small Outline Package (Pb-Free)         |                    |
|               | CY62256-70PC     | P15             | 28-lead (600-Mil) Molded DIP                         | Commercial         |
|               | CY62256L-70PC    | P15             | 28-lead (600-Mil) Molded DIP                         |                    |
|               | CY62256L-70PXC   | P15             | 28-lead (600-Mil) Molded DIP (Pb-Free)               |                    |
|               | CY62256LL-70PC   | P15             | 28-lead (600-Mil) Molded DIP                         |                    |
|               | CY62256LL-70PXC  | P15             | 28-lead (600-Mil) Molded DIP (Pb-Free)               |                    |
|               | CY62256LL-70ZRI  | ZR28            | 28-lead Reverse Thin Small Outline Package           | Industrial         |
| 1             | CY62256LL-70ZRXI | ZR28            | 28-lead Reverse Thin Small Outline Package (Pb-Free) |                    |

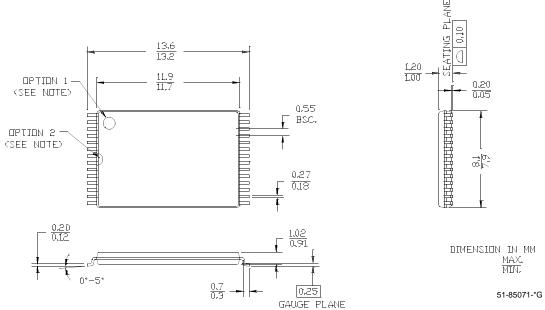



## **Package Diagrams**

## 28-lead (600-mil) Molded DIP P15

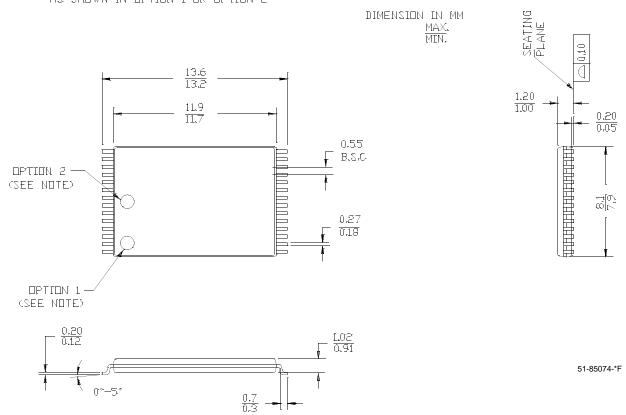


## 28-lead (300-mil) SNC (Narrow Body) SN28






## Package Diagrams (continued)


### 28-lead Thin Small Outline Package Type 1 (8 x 13.4 mm) Z28

NOTE: ORIENTATION ID MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2



## 28-Lead Reverse Type 1 Thin Small Outline Package (8x13.4 mm) ZR28

NOTE: ORIENTATION LD MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2



All product and company names mentioned in this document are the trademarks of their respective holders.



## **Document History Page**

| Docume<br>Docume | nt Title: CY6<br>nt Number: | 62256 256K<br>38-05248 | (32K x 8) \$    | Static RAM                                                                                                                                                                                    |
|------------------|-----------------------------|------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REV.             | ECN NO.                     | Issue<br>Date          | Orig. of Change | Description of Change                                                                                                                                                                         |
| **               | 113454                      | 03/06/02               | MGN             | Change from Spec number: 38-00455 to 38-05248 Remove obsolete parts from ordering info, standardize format                                                                                    |
| *A               | 115227                      | 05/23/02               | GBI             | Changed SN Package Diagram                                                                                                                                                                    |
| *B               | 116506                      | 09/04/02               | GBI             | Added footnote 1. Corrected package description in Ordering Information table                                                                                                                 |
| *C               | 238448                      | See ECN                | AJU             | Added Automotive product information                                                                                                                                                          |
| *D               | 344595                      | See ECN                | SYT             | Added Pb-Free packages on page# 10                                                                                                                                                            |
| *E               | 395936                      | See ECN                | SYT             | Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Added CY62256L-70SNXI package in the Ordering Information on Page # 10 |



中发网 WWW.ZFA.CN

全球最大的PDF中文下载站



PDF 资料下载尽在中发网