Triple－and Quad－Channel Unidirectional Digital Isolators

FEATURES

Pb －free，16－lead，wide body SOIC package
Low power operation
5 V operation
1.0 mA per channel max＠ 0 Mbps to 2 Mbps
3.5 mA per channel max＠ 10 Mbps

3 V operation
0.7 mA per channel max＠ 0 Mbps to 2 Mbps
2.1 mA per channel max＠ 10 Mbps
$3 \mathrm{~V} / 5 \mathrm{~V}$ level translation
High temperature operation： $105^{\circ} \mathrm{C}$
Up to 10 Mbps data rate（NRZ）
Programmable default output state
Safety and regulatory approvals
UL recognition： $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA component acceptance notice \＃5A
VDE certificate of conformity
DIN EN 60747－5－2（VDE 0884 Part 2）：2003－01
DIN EN 60950 （VDE 0805）：2001－12；EN 60950： 2000
$\mathrm{V}_{\text {IORM }}=560 \mathrm{~V}$ peak

APPLICATIONS

General－purpose unidirectional multichannel isolation

GENERAL DESCRIPTION

The ADuM1310 and ADuM1410 are unidirectional triple－ and quad－channel isolators based on Analog Devices＇i Coupler ${ }^{\circledR}$ technology．Combining high speed CMOS and monolithic coreless transformer technology，these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices．

By avoiding the use of LEDs and photodiodes，iCoupler devices remove the design difficulties commonly associated with optocouplers．The typical optocoupler concerns regarding uncertain current transfer ratios，nonlinear transfer functions， and temperature and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics． The need for external drivers and other discretes is eliminated with these i Coupler products．Furthermore，i Coupler devices run at one－tenth to one－sixth the power consumption of optocouplers at comparable signal data rates．

The ADuM1310 and ADuM1410 isolators provide three or four independent isolation channels at data rates up to 10 Mbps ．Both models operate with the supply voltage of either side ranging from 2.7 V to 5.5 V ，providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier．Each product also has a default output control pin with which the user can define the logic state the outputs are to take on in the absence of the input $V_{\text {DDI }}$ power．Unlike other optocoupler alternatives，the ADuM1310 and ADuM1410 have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power－up／power－down conditions．

FUNCTIONAL BLOCK DIAGRAMS

Figure 2.

ADuM1310/ADuM1410

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation 3
Electrical Characteristics-3 V Operation. 5
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V Operation 7
Package Characteristics 9
Regulatory Information 9
Insulation and Safety-Related Specifications 9
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics 10
REVISION HISTORY
11/05—Rev. SpB to Rev. C
5/05-Rev. SpA to Rev. SpB
Changes to Table 6 9
10/04—Data Sheet Changed from Rev. Sp0 to Rev. SpA
Changes to Table 59
Recommended Operating Conditions 10
Absolute Maximum Ratings 11
ESD Caution 11
Pin Configurations and Function Descriptions 12
Typical Performance Characteristics 13
Application Information 15
PC Board Layout 15
Propagation Delay-Related Parameters 15
DC Correctness and Magnetic Field Immunity 15
Power Consumption 16
Power-Up/Power-Down Considerations 17
Outline Dimensions 18
Ordering Guide 18

ADuM1310/ADuM1410

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION ${ }^{1}$

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
ADuM1310, Total Supply Current, Three Channels ${ }^{2}$							
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current, Quiescent	$\mathrm{IDD1}$ (0)		2.4	3.2	mA	$V_{\text {IA }}=V_{\text {V }}=V_{\text {IC }}=V_{\text {ID }}=0$	
$\mathrm{V}_{\text {DD2 }}$ Supply Current, Quiescent	$\mathrm{ldD2}$ (0)		1.2	1.6	mA	$\mathrm{V}_{\mathrm{IA}}=\mathrm{V}_{\text {IB }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$	
V ${ }_{\text {DD } 1}$ Supply Current, 10 Mbps Data Rate	IDD1 (10)		6.6	9.0	mA	5 MHz logic signal frequency	
$V_{\text {DD2 } 2}$ Supply Current, 10 Mbps Data Rate	$\mathrm{IDD2}^{(10)}$		2.1	3.0	mA	5 MHz logic signal frequency	
ADuM1410, Total Supply Current, Four Channels ${ }^{2}$							
$V_{\text {DD1 }}$ Supply Current, Quiescent	1 ld 1 (Q)		2.4	3.2	mA	$\mathrm{V}^{\text {I }}$ = $\mathrm{V}_{\text {IB }}=\mathrm{V}_{\text {IC }}=\mathrm{V}^{\text {ID }}=0$	
$V_{\text {DD } 2}$ Supply Current, Quiescent	1 ld 2 (0)		1.2	1.6	mA	$V_{V A}=V^{\text {IB }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$	
$V_{\text {DD1 }}$ Supply Current, 10 Mbps Data Rate	$\operatorname{ldD1~(10)~}$		8.8	12	mA	5 MHz logic signal frequency	
V DD $2 ~ S u p p l y ~ C u r r e n t, ~_{10} \mathrm{Mbps}$ Data Rate	ldD2 (10)		2.8	4.0	mA	5 MHz logic signal frequency	
For All Models							
Input Currents	$I_{A A}, I_{I_{B},}, I_{C}$, IId, Ittrl, IDISABLE	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq V_{I A}, V_{\text {IB, }}, V_{\text {IC }}, V_{\text {ID }}, \\ & V_{\text {DISABLE }} \leq V_{\text {DD1 }}, 0 \leq V_{C T R L} \leq V_{D D 2} \end{aligned}$	
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$			2.0	V		
Logic Low Input Threshold		0.8			V		
Logic High Output Voltages	Vоан, Vовн, $V_{\text {och, }}$ Vod	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}-0.4$	4.8		V	$\mathrm{lox}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
Logic Low Output Voltages	Voal, Vobl, Vocl, Vodl		0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=+4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{lxL}}$	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }}$ tpLH	20	30	50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, \|tpLH - $\mathrm{tpHL}{ }^{5}$	PWD			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	tpsk			30	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching ${ }^{7}$	tPSKCD			5	ns	$\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IX}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		
Input Enable Time ${ }^{9}$	tenable			2.0	$\mu \mathrm{s}$	$V_{I A}, V_{1 B}, V_{I C}, V_{\text {ID }}=0$ or $V_{\text {DD }}$	
Input Disable Time ${ }^{9}$	tolisable			5.0		$V_{1 A}, V_{I B}, V_{I C}, V_{I D}=0$ or $V_{D D 1}$	
Input Dynamic Supply Current per Channel ${ }^{10}$	$\mathrm{IDDI}(\mathrm{D})$		0.19		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{10}$	IDDO (D)		0.05		mA/Mbps		

ADuM1310/ADuM1410

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ Supply current values are for all four channels combined running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on the per-channel supply current as a function of the data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply currents as a function of the data rate for the ADuM1310/ADuM1410 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 x}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels within the same component.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Input enable time is the duration from when Visable is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABE is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL logic state (see Table 10).
${ }^{10}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on the per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1310/ADuM1410

ELECTRICAL CHARACTERISTICS—3 V OPERATION ${ }^{1}$

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 2.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Min \& Typ \& Max \& Unit \& Test Conditions \\
\hline \begin{tabular}{l}
DC SPECIFICATIONS \\
ADuM1310, Total Supply Current, Three Channels \({ }^{2}\) \\
VDD1 Supply Current, Quiescent \\
\(V_{\text {DD2 }}\) Supply Current, Quiescent \\
\(V_{\text {DDI }}\) Supply Current, 10 Mbps Data Rate \\
\(V_{\text {DD2 }}\) Supply Current, 10 Mbps Data Rate \\
ADuM1410, Total Supply Current, Four Channels \({ }^{2}\) \\
VDD1 Supply Current, Quiescent \\
\(V_{\text {DD2 }}\) Supply Current, Quiescent \\
\(V_{\text {DD1 }}\) Supply Current, 10 Mbps Data Rate \\
VDD2 Supply Current, 10 Mbps Data Rate \\
For All Models \\
Input Currents \\
Logic High Input Threshold \\
Logic Low Input Threshold \\
Logic High Output Voltages \\
Logic Low Output Voltages
\end{tabular} \& \begin{tabular}{l}
IDD1 (Q) \\
ldD2 (Q) \\
ldD1 (10) \\
loD2 (10) \\
IDD1 (Q) \\
IDD2 (Q) \\
ldD1 (10) \\
IDD2 (10) \\
\(I_{I_{A}}, I_{B,}, I_{I_{C}}\) \\
lid, Ictrl, \\
Idisable \\
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(V_{\text {IL }}\) \\
\(\mathrm{V}_{\text {оан, }} \mathrm{V}_{\text {овн }}\), \\
\(V_{\text {Och, }} V_{\text {Odh }}\) \\
Voal, Vobl, \\
Vocl, \(\mathrm{V}_{\text {ODL }}\)
\end{tabular} \& \[
-10
\]
\[
0.4
\]
\[
V_{D D 1}, V_{D D 2}-0.4
\] \& \[
\begin{aligned}
\& 1.2 \\
\& 0.8 \\
\& 3.4 \\
\& 1.1 \\
\& 1.2 \\
\& 0.8 \\
\& 4.5 \\
\& 1.4 \\
\& +0.01 \\
\& \\
\& \\
\& 2.8 \\
\& 0.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.6 \\
\& 1.0 \\
\& 4.9 \\
\& 1.3 \\
\& 1.6 \\
\& 1.0 \\
\& 6.5 \\
\& 1.8 \\
\& +10 \\
\& 1.6 \\
\& \\
\& \hline 0.4
\end{aligned}
\] \& \begin{tabular}{l}
mA \\
\(\mu \mathrm{A}\) \\
V \\
V \\
V \\
V
\end{tabular} \& \\
\hline \begin{tabular}{l}
SWITCHING SPECIFICATIONS \\
Minimum Pulse Width \({ }^{3}\) \\
Maximum Data Rate \({ }^{4}\) \\
Propagation Delay \({ }^{5}\) \\
Pulse Width Distortion, |tple - tpHL \(^{5}\) \\
Change vs. Temperature \\
Propagation Delay Skew (Equal Temperature) \({ }^{6}\) \\
Channel-to-Channel Matching \({ }^{7}\) \\
Output Rise/Fall Time (10\% to 90\%) \\
Common-Mode Transient Immunity at Logic High Output \({ }^{8}\) \\
Common-Mode Transient Immunity at Logic Low Output \({ }^{8}\) \\
Refresh Rate \\
Input Enable Time \({ }^{9}\) \\
Input Disable Time \({ }^{9}\) \\
Input Dynamic Supply Current per Channel \({ }^{10}\) \\
Output Dynamic Supply Current per Channel \({ }^{10}\)
\end{tabular} \& \begin{tabular}{l}
PW \\
tphl, tpLh \\
PWD \\
tpsk \\
tpskco \\
\(\mathrm{t}_{\mathrm{k}} / \mathrm{t}_{\mathrm{F}}\) \\
\(\left|\mathrm{CM}_{\mathrm{H}}\right|\) \\
\(\left|C M_{L}\right|\) \\
\(\mathrm{f}_{\mathrm{r}}\) \\
tenable \\
tIISABLE \\
lodi (D) \\
IDDO (D)
\end{tabular} \& 10
20

25

25 \& | 30 5 |
| :--- |
| 2.5 |
| 35 |
| 35 |
| 1.1 $\begin{aligned} & 0.10 \\ & 0.03 \end{aligned}$ | \& 100

50
5
30

5 \& \begin{tabular}{l}
ns

Mbps

ns

ns

$\mathrm{ps} /{ }^{\circ} \mathrm{C}$

ns

ns

ns

kV/ $\mu \mathrm{s}$

kV/ $\mu \mathrm{s}$

Mbps

$\mu \mathrm{s}$

$\mu \mathrm{s}$

mA/Mbps

mA/Mbps

 \&

$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels

$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}_{\text {signal levels }}$

$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels

$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

$\mathrm{V}_{1 \times}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$,

transient magnitude $=800 \mathrm{~V}$

$\mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$,

transient magnitude $=800 \mathrm{~V}$

$V_{I A}, V_{I B}, V_{I C}, V_{I D}=0$ or $V_{D D 1}$

$V_{I A}, V_{I B}, V_{I C}, V_{I D}=0$ or $V_{D D 1}$
\end{tabular}

\hline
\end{tabular}

ADuM1310/ADuM1410

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ Supply current values are for all four channels combined running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on the per-channel supply current as a function of the data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply currents as a function of the data rate for the ADuM1310/ADuM1410 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 x}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels within the same component.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Input enable time is the duration from when Visable is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VIIABLE is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL logic state (see Table 10).
${ }^{10}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on the per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION ${ }^{1}$

$5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} ; 3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all $\mathrm{min} / \mathrm{max}$ specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$; or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
ADuM1310, Total Supply Current, Three Channels ${ }^{2}$						
$V_{\text {DD1 }}$ Supply Current, Quiescent	IDDI (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.4	3.2	mA	$\mathrm{V}_{1 A}=\mathrm{V}_{\text {IB }}=\mathrm{V}_{\text {V }}=\mathrm{V}_{\text {ID }}=0$
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	$V_{I A}=V^{1 B}=V_{V C}=V_{I D}=0$
$\mathrm{V}_{\text {DD2 }}$ Supply Current, Quiescent	IDDo (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.8	1.0	mA	$\mathrm{V}_{1 A}=\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	$\mathrm{V}_{\mathrm{IA}}=\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current, 10 Mbps Data Rate	$\operatorname{ldD1}(10)$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			6.5	8.2	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.4	4.9	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current, 10 Mbps Data Rate	$\operatorname{ldD2}$ (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.3	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.9	2.2	mA	5 MHz logic signal frequency
ADuM1410, Total Supply Current, Four Channels ${ }^{2}$						
$V_{\text {DD1 }}$ Supply Current, Quiescent	IDDI (e)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.4	3.2	mA	$V_{V A}=V^{\text {I }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	$\mathrm{V}_{1 A}=\mathrm{V}_{1 B}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$
$V_{\text {DD2 }}$ Supply Current, Quiescent	IDDo (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.8	1.0	mA	$\mathrm{V}_{1 A}=\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=0$
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	$V_{I A}=V^{1 B}=V_{V C}=V_{I D}=0$
$V_{\text {DD } 1}$ Supply Current, 10 Mbps Data Rate	ldD1 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			8.6	11	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.4	6.5	mA	5 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current, 10 Mbps Data Rate	ldD2 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.4	1.8	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.6	3.0	mA	5 MHz logic signal frequency
For All Models						
Input Currents	$I_{A A}, I_{1 B}, I_{l}$, ID, Ittrl, Idisable	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{BB}}, \mathrm{~V}_{I C}, \mathrm{~V}_{\text {ID }}, \mathrm{V}_{\text {DISABLE }} \leq \mathrm{V}_{\mathrm{DD} 1}, \\ & 0 \leq \mathrm{V}_{\mathrm{CTRL}} \leq \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic High Input Threshold	V_{H}					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation				2.0	V	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation				1.6	V	
Logic Low Input Threshold	VIL					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation		0.8			V	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation		0.4			V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }}, \mathrm{V}_{\text {OBH }}$, $\mathrm{V}_{\text {och }} \mathrm{V}_{\text {od }}$	$\mathrm{V}_{\mathrm{DD} 1} /$ $V_{D D 2}-0.4$	$V_{D D 1} /$ $V_{D D 2}-0.2$		V	$\mathrm{lox}_{\mathrm{x}}=-4 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	Voal, Vobl, Vocl, Vodl		0.2	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=+4 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {IXL }}$

ADuM1310/ADuM1410

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	30	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, \|tpLH - tprl	${ }^{5}$	PWD			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5				
Propagation Delay Skew ${ }^{6}$	$\mathrm{t}_{\text {PSK }}$			30	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching ${ }^{7}$	$\mathrm{t}_{\text {PSkco }}$			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{f}}$					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.0		ns		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns		
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2,}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	$\left\|C M_{L}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps		
Input Enable Time ${ }^{9}$	tenable			2.0	$\mu \mathrm{s}$	$\mathrm{V}_{1 A}, \mathrm{~V}_{1 B}, \mathrm{~V}_{1 C}, \mathrm{~V}_{10}=0$ or $\mathrm{V}_{\text {DD }}$	
Input Disable Time ${ }^{9}$	tisable			5.0	$\mu \mathrm{s}$	$\mathrm{V}_{1 A}, \mathrm{~V}_{1 B}, \mathrm{~V}_{1}, \mathrm{~V}_{10}=0$ or $\mathrm{V}_{\mathrm{DD} 1}$	
Input Dynamic Supply Current per Channel ${ }^{10}$	$\mathrm{ldDI}(\mathrm{D})$						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.19		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{10}$	$\mathrm{IDDI}(\mathrm{D})$						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps		

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ Supply current values are for all channels combined running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on the per-channel supply current as a function of the data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $I_{D D 1}$ and $I_{D D 2}$ supply currents as a function of the data rate for the ADuM1310/ADuM1410.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{0 \times}$ signal. tpLH propagation delay is measured from the 50% level of the rising edge of the $V_{1 \times}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{6}$ tpsk is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or tpLH $^{\text {that }}$ is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels within the same component.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Input enable time is the duration from when $V_{\text {DISABLE }}$ is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when $V_{\text {DISABLE }}$ is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL logic state (see Truth Table - Table 10).
${ }^{10}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on the per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1310/ADuM1410

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input-Output) ${ }^{2}$	$\mathrm{Cl}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JcI}		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside

${ }^{1}$ Device considered a 2-terminal device. Pin 1, Pin 2, $\operatorname{Pin} 3, \operatorname{Pin} 4, \operatorname{Pin} 5, \operatorname{Pin} 6, \operatorname{Pin} 7$, and $\operatorname{Pin} 8$ shorted together and Pin 9, Pin 10, $\operatorname{Pin} 11, \operatorname{Pin} 12, \operatorname{Pin} 13, \operatorname{Pin} 14, \operatorname{Pin} 15$, and Pin 16 shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM1x10 is approved by the following organizations.
Table 5.

UL1	CSA	VDE $^{\mathbf{2}}$
Recognized under 1577	Approved under CSA Component	Certified according to:
Component Recognition Program	Acceptance Notice \#5A	DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01
		DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000

${ }^{1}$ In accordance with UL1577, each ADuM1310 and ADuM1410 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN EN 60747-5-2, each ADuM1310 and ADuM1410 is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(101)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

ADuM1310/ADuM1410

DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS

Table 7.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110			
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms		I-IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms		I-III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms		I-II	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	Viorm	560	\checkmark peak
Input to Output Test Voltage, Method b1	$V_{\text {PR }}$	1050	\checkmark peak
$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }}$, 100\% Production Test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$			
Input to Output Test Voltage, Method A	$V_{\text {PR }}$		
After Environmental Tests Subgroup 1			
$V_{\text {IORM }} \times 1.6=V_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$		896	\checkmark peak
After Input and/or Safety Test Subgroup 2/3			
$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$)	$V_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values (maximum value allowed in the event of a failure; see Figure 3)			
Case Temperature	Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current	Is1	265	mA
Side 2 Current	$\mathrm{I}_{\text {S } 2}$	335	mA
Insulation Resistance at $\mathrm{T}_{5}, \mathrm{~V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.

Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms

${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	$\mathrm{T}_{\text {st }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	$V_{D D 1}, V_{\text {DD } 2}$	-0.5	+6.5	V
Input Voltage ${ }^{1,2}$	$V_{I A}, V_{1 B}, V_{I C}, V_{I D}, V_{\text {CTRL }}$	-0.5	$V_{\text {DII }}+0.5$	V
Output Voltage ${ }^{1,2}$	$V_{\text {OA }}, V_{\text {OB, }}, V_{\text {OC, }}, V_{\text {OD }}$	-0.5	$V_{\text {DDO }}+0.5$	V
Average Output Current per Pin^{3}				
Side 1	101	-18	+18	mA
Side 2	lo2	-22	+22	mA
Common-Mode Transients ${ }^{4}$		-100	+100	kV/ $\mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively.
${ }^{3}$ See Figure 3 for maximum rated current values for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Ratings can cause latch-up or permanent damage.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 10. Truth Table (Positive Logic)

VIX Input ${ }^{1}$	CTRL Input	$\begin{aligned} & \hline \text { V DISABLE } \\ & \text { State } \end{aligned}$	$V_{\text {DD } 1}$ State ${ }^{1}$	$V_{\text {DD2 }}$ State ${ }^{1}$	Vox Output ${ }^{1}$	Notes
H	X	L or NC	Powered	Powered	H	Normal operation, data is high.
L	X	L or NC	Powered	Powered	L	Normal operation, data is low.
X	H or NC	H	X	Powered	H	Inputs disabled. Outputs are in the default state as determined by CTRL.
X		H	X	Powered	L	Inputs disabled. Outputs are in the default state as determined by CTRL.
X	H or NC	X	Unpowered	Powered	H	Input unpowered. Outputs are in the default state as determined by CTRL. Outputs return to input state within $1 \mu \mathrm{~s}$ of V_{DD} power restoration. See the Power-Up/Power-Down Considerations section for more details.
X	L	x	Unpowered	Powered	L	Input unpowered. Outputs are in the default state as determined by CTRL. Outputs return to input state within $1 \mu \mathrm{~S}$ of $\mathrm{V}_{\mathrm{DD} 1}$ power restoration. See the Power-Up/Power-Down Considerations section for more details.
X	x	x	Powered	Unpowered	Z	Output unpowered. Output pins are in high impedance state. Outputs return to input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DD} 2}$ power restoration. See the Power-Up/Power-Down Considerations section for more details.

${ }^{1} V_{\text {IX }}$ and $V_{o x}$ refer to the input and output signals of a given channel (A, B, C, or D).

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADuM1310/ADuM1410

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADuM1310 Pin Configuration

Figure 5. ADuM1410 Pin Configuration
*Pin 2 and Pin 8 are internally connected. Connecting both to GND ${ }_{1}$ is recommended. Pin 9 and Pin 15 are internally connected. Connecting both to GND ${ }_{2}$ is recommended.

Table 11. ADuM1310 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{1 B}$	Logic Input B.
5	V IC	Logic Input C.
6	NC	No Connect.
7	DISABLE	Input Disable. Disables the isolator inputs and refreshes. Outputs take on logic state determined by CTRL.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	CTRL	Default Output Control. Controls the logic state the outputs take on when the input power is off. $V_{O A}, V_{O B}, V_{O C}$, and $V_{\text {OD }}$ outputs are high when CTRL is high or disconnected and $V_{D D 1}$ is off. $V_{O A}, V_{O B}, V_{O C}$, and $V_{\text {OD }}$ outputs are low when CTRL is low and $V_{D D 1}$ is off. When $V_{D D 1}$ power is on, this pin has no effect.
11	NC	No Connect.
12	V oc	Logic Output C.
13	Vob	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.

Table 12. ADuM1410 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VD1	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND_{1}	Ground 1. Ground reference for isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	VIC	Logic Input C.
6	VID	Logic Input D.
7	DISABLE	Input Disable. Disables the isolator inputs and refreshes. Outputs take on logic state determined by CTRL.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	CTRL	Default Output Control. Controls the logic state the outputs take on when the input power is off. $V_{O A}, V_{O B}, V_{O C}$, and $V_{O D}$ outputs are high when CTRL is high or disconnected and $V_{D D 1}$ is off. $V_{O A}, V_{O B}, V_{O C}$, and $V_{O D}$ outputs are low when CTRL is low and $V_{D D 1}$ is off. When $V_{D D 1}$ power is on, this pin has no effect.
11	$\mathrm{V}_{\text {OD }}$	Logic Output D.
12	Voc	Logic Output C.
13	$\mathrm{V}_{\text {ob }}$	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

Figure 7. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. Typical ADuM1310 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. Typical ADuM1310 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 11. Typical ADuM1410 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

ADuM1310/ADuM1410

Figure 12. Typical ADuM1410 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

ADuM1310/ADuM1410

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM1x10 digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 13). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{D D 1}$ and between Pin 15 and Pin 16 for $\mathrm{V}_{\mathrm{DD} 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

Figure 13. Recommended Printed Circuit Board Layout

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the length of time it takes for a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

Figure 14. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM1x10 component.

Propagation delay skew refers to the maximum amount the propagation delay differs among multiple ADuM1x10 components operated under the same conditions.

ADuM1310/ADuM1410

Given the geometry of the receiving coil in the ADuM1x10 and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 15.

Figure 15. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kGauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurred during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM1x10 transformers. Figure 16 expresses these allowable current magnitudes as a function of frequency for selected distances. As can be seen, the ADuM1x10 is extremely immune and can be affected only by extremely large currents operated at high frequency, very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM1x10 to affect the component's operation.

Figure 16. Maximum Allowable Current for Various Current to ADuM1x10 Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM1x10 isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I}(Q) & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I}(D) \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D O}=I_{D D O}(Q) & \mathrm{f} \leq 0.5 \mathrm{f}_{\mathrm{r}} \\
I_{D D O}=\left(I_{D D O}(D)+C_{L} V_{D D O}\right) \times\left(2 f-f_{\mathrm{r}}\right)+I_{D D O(Q)} & \mathrm{f}>0.5 \mathrm{f}_{\mathrm{r}}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency $(\mathrm{Hz}$, half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (bps).
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).

To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled. Figure 6 and Figure 7 provide per-channel supply currents as a function of the data rate for an unloaded output condition. Figure 8 provides perchannel supply current as a function of the data rate for a 15 pF output condition. Figure 9 through Figure 12 provide total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current as a function of the data rate for ADuM1310/ADuM1410 products.

ADuM1310/ADuM1410

POWER-UP/POWER-DOWN CONSIDERATIONS

Given that the ADuM1310/ADuM1410 have separate supplies on either side of the isolation barrier, the power-up and powerdown characteristics relative to each supply voltage need to be considered individually.

As shown in Table 10, when $V_{\text {DDI }}$ input power is off, the ADuM1310/ADuM1410 outputs take on a default condition as determined by the state of the CTRL pin. As the $V_{D D 1}$ supply is increased/decreased, the output of each channel transitions from/to the default condition to/from the state matching its respective signals (see Figure 17 and Figure 18).

Figure 17. VDD1 Power-Up/Power-Down Characteristics, Input Data $=$ High

Figure 18. VDII Power-Up/Power-Down Characteristics, Input Data = Low

When $V_{\text {DDI }}$ crosses the threshold for activating the refresh circuit (approximately 2 V), there can be a delay of up to $2 \mu \mathrm{~s}$ before the output is updated to the correct state depending on the timing of the next refresh pulse. When $V_{D D 1}$ is reduced from an on state below the 2 V threshold, there can be a delay of up to 5μ sefore the output takes on its default state determined by the CTRL signal. This corresponds to the duration that the watchdog timer circuit at the input is designed to wait before triggering an output default state.

When the $\mathrm{V}_{\mathrm{DD} 2}$ output supply is below the level at which the ADuM1310/ADuM1410's output transistors are biased (about 1 V), the outputs take on a high impedance state. When $\mathrm{V}_{\mathrm{DD} 2}$ is above a value of about 2 V , each channel's output takes on a state matching that of its respective input. Between the values of 1 V and 2 V , the outputs are set low. This behavior is shown in Figure 19 and Figure 20.

Figure 19. VDD2 Power-Up/Power-Down Characteristics, Input Data = High

Figure 20. VDD2 Power-Up/Power-Down Characteristics, Input Data = Low

ADuM1310/ADuM1410

OUTLINE DIMENSIONS

Figure 21. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Number of Channels	Maximum Data Rate (Mbps)	Temperature Range	Package Description	Package Option
ADuM1310BRWZ 1	3	10	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16 -Lead Wide Body SOIC_W	RW-16
ADuM1310BRWZ-RL 1,2	3	10	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16 -Lead Wide Body SOIC_W	RW-16
ADuM1410BRWZ 1	4	10	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Wide Body SOIC_W	RW-16
ADuM1410BRWZ-RL 1,2	4	10	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16 -Lead Wide Body SOIC_W	RW-16

[^0]NOTES

ADuM1310/ADuM1410

NOTES

ANALOG DEVICES

中发网
 WWW．Zfa．©n

[^0]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.
 ${ }^{2}$ The addition of an -RL suffix designates a 13-inch (1,000 units) tape and reel option.

