MAX4188/MAX4189/MAX4190

EVALUATION KIT **AVAILABLE**

Single/Triple, Low-Glitch, 250MHz, Current-Feedback Amplifiers with High-Speed Disable

General Description

The MAX4188/MAX4189/MAX4190 are low-power, current-feedback video amplifiers featuring fast disable/enable times and low switching transients. The triple MAX4188 and the single MAX4190 are optimized for applications with closed-loop gains of +2V/V (6dB) or greater and provide a -3dB bandwidth of 200MHz and 185MHz, respectively. The triple MAX4189 is optimized for closed-loop applications with gains of +1V/V (0dB) or greater and provides a 250MHz -3dB bandwidth. These amplifiers feature 0.1dB gain flatness up to 80MHz with differential gain and phase errors of 0.03% and 0.05°. These features make the MAX4188 family ideal for video applications.

The MAX4188/MAX4189/MAX4190 operate from a +5V single supply or from ± 2.25 V to ± 5.5 V dual supplies. These amplifiers consume only 1.5mA per amplifier and are capable of delivering ±55mA of output current, making them ideal for portable and battery-powered equipment.

The MAX4188/MAX4189/MAX4190 have a high-speed disable/enable mode that isolates the inputs, places the outputs in a high-impedance state, and reduces the supply current to 450µA per amplifier. Each amplifier can be disabled independently. High off isolation, low switching transient, and fast enable/disable times (120ns/35ns) allow these amplifiers to be used in a wide range of multiplexer applications. A settling time of 22ns to 0.1%, a slew rate of up to 350V/µs, and low distortion make these devices useful in many generalpurpose, high-speed applications.

The MAX4188/MAX4189 are available in a tiny 16-pin QSOP package, and the MAX4190 is available in a space-saving 8-pin µMAX package.

Applications

High-Definition Surveillance Video

High-Speed Switching/Multiplexing

Portable/Battery-Powered Video/Multimedia Systems

High-Speed Analog-to-Digital Buffers

Medical Imaging

MIXIM

High-Speed Signal Processing

Professional Cameras

CCD Imaging Systems

RGB Distribution Amplifiers

Pin Configuration appears at end of data sheet.

Features

- Low Supply Current: 1.5mA per Amplifier
- ♦ Fast Enable/Disable Times: 120ns/35ns
- ♦ Very Low Switching Transient: 45mVp-p
- High Speed

200MHz -3dB Small-Signal Bandwidth (MAX4188, Avcl \geq +2)

250MHz -3dB Small-Signal Bandwidth (MAX4189, AVCL \geq +1)

185MHz -3dB Small-Signal Bandwidth (MAX4190, AVCL ≥ +2)

♦ High Slew Rate 350V/µs (MAX4188, Avcl ≥ +2) 175V/µs (MAX4189, AvcL ≥ +1)

- ♦ Excellent Video Specifications 85MHz -0.1dB Gain Flatness (MAX4190) 30MHz -0.1dB Gain Flatness (MAX4189) **Differential Gain/Phase Errors** 0.03%/0.05° (MAX4188)
- ♦ Low-Power Disable Mode Inputs Isolated, Outputs Placed in High-Z Supply Current Reduced to 450µA per Amplifier
- ◆ Fast Settling Time of 22ns to 0.1%
- Low Distortion **70dB** SFDR ($f_c = 5MHz$, $V_O = 2V_{p-p}$, MAX4188)
- ♦ Available in Space-Saving Packages 16-Pin QSOP (MAX4188/MAX4189) 8-Pin µMAX (MAX4190)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4188ESD	-40°C to +85°C	14 SO
MAX4188EEE	-40°C to +85°C	16 QSOP

Ordering Information continued at end of data sheet.

Selector Guide

PART	OPTIMIZED FOR:	AMPLIFIERS PER PKG.	PIN-PACKAGE
MAX4188	$A_V \ge +2V/V$	3	14-pin SO, 16-pin QSOP
MAX4189	$A_V \ge +1V/V$	3	14-pin SO, 16-pin QSOP
MAX4190	A _V ≥ +2V/V	1	8-pin μMAX/SO

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})+12V
IN_+, IN, DISABLE_ Voltage(VEE - 0.3V) to (VCC + 0.3V)
Differential Input Voltage (IN_+ to IN)±1.5V
Maximum Current into IN_+ or IN±10mA
Output Short-Circuit Current DurationContinuous
Continuous Power Dissipation (T _A = +70°C)
8-Pin SO (derate 5.88mW/°C above +70°C)471mW
8-Pin μMAX (derate 4.1mW/°C above +70°C)330mW

14-Pin SO (derate 8.3mW/°C above +70°C	c)667mW
16-Pin QSOP (derate 8.3mW/°C above +70	°C)667mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V_{CC} = +5V; V_{EE} = -5V; IN_{+} = 0; \overline{DISABLE}_{-} \geq 3.2V; MAX4188: A_{V} = +2V/V, R_{F} = R_{G} = 910\Omega \text{ for } R_{L} = 1k\Omega \text{ and } R_{F} = R_{G} = 560\Omega \text{ for } R_{L} = 150\Omega; MAX4189: A_{V} = +1V/V, R_{F} = 1600\Omega \text{ for } R_{L} = 1k\Omega \text{ and } R_{F} = 1100\Omega \text{ for } R_{L} = 150\Omega; MAX4190: A_{V} = +2V/V, R_{F} = R_{G} = 1300\Omega \text{ for } R_{L} = 1k\Omega, R_{F} = R_{G} = 680\Omega \text{ for } R_{L} = 150\Omega; T_{A} = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are specified at } T_{A} = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage		Inferred from PSRR tests	±2.25		±5.5	V
Input Voltage Range	V _{CM}	Guaranteed by CMRR test	±3.1	±3.4		V
Input Offset Voltage	Vos	V _{CM} = 0 (Note 1)		±1	±6	mV
Input Offset Voltage Tempco	TC _{VOS}			±10		μV/°C
Input Offset Voltage Matching				±1		mV
Input Bias Current (Positive Input)	I _{B+}			±1	±10	μΑ
Input Bias Current (Negative Input)	I _B -			±2	±12	μΑ
Input Resistance (Positive Input)	R _{IN+}	$-3.1V \le V_{CM} \le 3.1V$, $ V_{IN} + -V_{IN} - \le 1V$	100	350		kΩ
Input Resistance (Negative Input)	R _{IN} -			300		Ω
Input Capacitance (Positive Input)	CIN			2.5		pF
Common-Mode Rejection Ratio	CMRR	-3.1V ≤ V _{CM} ≤ 3.1V	56	68		dB
Open-Loop Transresistance	T _R	$-3.1V \le V_{OUT} \le 3.1V$, $R_L = 1k\Omega$	1	7		ΜΩ
Open-Loop transfesistance	'R	$-2.8V \le V_{OUT} \le 2.8V$, $R_L = 150\Omega$	0.3	2		10122
Output Voltage Swing	V _{SW}	$R_L = 1k\Omega$	±3.5	±4.0		V
Output voltage Swing	v SW	$R_L = 150\Omega$	±3.0	±3.3		V
Output Current	lout	$R_L = 30\Omega$	±20	±55		mA
Output Short-Circuit Current	Isc			±60		mA
Output Resistance	Rout			0.2		Ω
Disabled Output Leakage Current	IOUT(OFF)	$\overline{\text{DISABLE}} \le V_{\text{IL}}, V_{\text{OUT}} \le \pm 3.5 \text{V (Note 2)}$		±0.8	±5	μΑ
Disabled Output Capacitance	Cout(off)	DISABLE_ ≤ V _{IL} , V _{OUT} ≤ ±3.5V		5		рF
DISABLE Low Threshold	VIL	(Note 3)			Vcc - 3	V
DISABLE High Threshold	VIH	(Note 3)	V _{CC} - 1.8			V
DISABLE Input Current	I _{IN}	V _{EE} ≤ DISABLE_ ≤ V _{CC}		0.1	2	μΑ
Power-Supply Rejection Ratio (V _{CC})	PSRR+	$V_{EE} = -5V$, $V_{CC} = 4.5V$ to 5.5V	60	75		dB
Power-Supply Rejection Ratio (VEE)	PSRR-	$V_{CC} = 5V$, $V_{EE} = -4.5V$ to $-5.5V$	60	73		dB
Quiescent Supply Current (per Amplifier)	Is	R _L = open		1.5	1.85	mA
Disabled Supply Current (per Amplifier)	Is(OFF)	DISABLE_ ≤ V _{IL} , R _L = open		0.45	0.65	mA

DC ELECTRICAL CHARACTERISTICS—Single Supply

 $(V_{CC}=+5V;V_{EE}=0;IN+=2.5V;\overline{DISABLE}_{-}\geq3.2V;R_{L}\ to\ V_{CC}/2;MAX4188:A_{V}=+2V/V,R_{F}=R_{G}=1.1k\Omega\ for\ R_{L}=1k\Omega\ and\ R_{F}=R_{G}=620\Omega\ for\ R_{L}=150\Omega;MAX4189:A_{V}=+1V/V,R_{F}=1500\Omega\ for\ R_{L}=1k\Omega\ and\ R_{F}=1600\Omega\ for\ R_{L}=150\Omega;MAX4190:A_{V}=+2V/V,R_{F}=R_{G}=1300\Omega\ for\ R_{L}=1k\Omega,R_{F}=R_{G}=680\Omega\ for\ R_{L}=150\Omega;T_{A}=T_{MIN}\ to\ T_{MAX},\ unless\ otherwise\ noted.$ Typical values are specified at $T_{A}=+25^{\circ}C.$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage		Inferred from PSRR tests	4.5		5.5	V
Input Voltage Range	V _{CM}	Guaranteed by CMRR test	1.6 to 3.4	1.3 to 3.7		V
Input Offset Voltage	Vos	V _{CM} = 2.5V (Note 1)		±1.5	±6.0	mV
Input Offset Voltage Tempco	TCvos			±10		μV/°C
Input Offset Voltage Matching				±1		mV
Input Bias Current (Positive Input)	I _{B+}			±1	±10	μΑ
Input Bias Current (Negative Input)	I _B -			±2	±12	μΑ
Input Resistance (Positive Input)	R _{IN+}	1.6V ≤ V _{CM} ≤ 3.4V, V _{IN+} - V _{IN-} ≤ 1V	100	350		kΩ
Input Resistance (Negative Input)	R _{IN-}			300		Ω
Input Capacitance (Positive Input)	CIN			2.5		pF
Common-Mode Rejection Ratio	CMRR	1.5V ≤ V _{CM} ≤ 3.5V	48	65		dB
Open-Loop Transresistance	TR	$1.3V \le V_{OUT} \le 3.7V$, $R_L = 1k\Omega$	1.0	6.5		MΩ
Open-Loop transfesistance	IR	$1.45V \le V_{OUT} \le 3.55V$, $R_L = 150\Omega$	0.2	1.0		10122
Output Voltage Swing	Vsw	$R_L = 1k\Omega$	1.2 to 3.8	0.9 to 4.1		V
Output voltage Swing	V 5 VV	$R_L = 150\Omega$	1.4 to 3.6	1.15 to 3.85		V
Output Current	lout	$R_L = 30\Omega$	±16	±28		mA
Output Short-Circuit Current	Isc			±50		mA
Output Resistance	Rout			0.2		Ω
Disabled Output Leakage Current	I _{OUT} (OFF)	$\overline{\text{DISABLE}} \le V_{\text{IL}}$, 1.2V $\le V_{\text{OUT}} \le 3.8V$ (Note 2)		0.8	±5	μΑ
Disabled Output Capacitance	Cout(off)	DISABLE_ ≤ V _{IL} , 1.2V ≤ V _{OUT} ≤ 3.8V		5		pF
DISABLE Low Threshold	VIL	(Note 3)			V _{CC} - 3	V
DISABLE High Threshold	VIH	(Note 3)	V _{CC} - 1.8	3		V
DISABLE Input Current	I _{IN}	0 ≤ DISABLE_ ≤ V _{CC}		0.1	2	μΑ
Power-Supply Rejection Ratio (V _{CC})	PSRR+	V _{CC} = 4.5V to 5.5V	60	75		dB
Quiescent Supply Current (per Amplifier)	IS	R _L = open		1.5	1.85	mA
Disabled Supply Current (per Amplifier)	IS(OFF)	DISABLE_ ≤ V _{IL} , R _L = open		0.45	0.65	mA

AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4188)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{IN} = 0, \overline{DISABLE} \ge 3V, A_V = +2V/V, R_F = R_G = 910\Omega$ for $R_L = 1k\Omega$ or $R_F = R_G = 560\Omega$ for $R_L = 150\Omega$; $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	COI	NDITIONS	MIN TYP	MAX	UNITS	
Consult Claused 201D December 14th	DW	$R_L = 1k\Omega$		200	200		
Small-Signal -3dB Bandwidth	BW-3dB	$R_L = 150\Omega$		160		MHz	
D 11		$R_L = 1k\Omega$		0.25	0.25 0.1		
Peaking		$R_L = 150\Omega$		0.1			
D	DW	$R_L = 1k\Omega$		60			
Bandwidth for 0.1dB Flatness	BW _{0.1dB}	$R_L = 150\Omega$		80		MHz	
Large Clausel 2dD Dandwidth	DW	2) /	$R_L = 1k\Omega$	100		N 41 1-	
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2Vp-p	$R_L = 150\Omega$	100		- MHz	
Slew Rate	SR	V _{OUT} = 4V step,	Positive slew	350		Muc	
Siew Rate	J SK	$R_L = 150\Omega$	Negative slew	280		− V/µs	
Settling Time to 0.1%	ts	Vout = 4V step	-	22		ns	
Rise/Fall Time		Vout = 4V step	Rise time	10		nc	
RISE/Fall Tillle		VOUT = 4V Step	Fall time	12		ns	
Spurious Fron Dynamic Dango	SFDR	f _C = 5MHz,	$R_L = 1k\Omega$	70		- dB	
Spurious-Free Dynamic Range	SFUR	V _{OUT} = 2Vp-p	$R_L = 150\Omega$	56		T UB	
Second Harmonic Distortion		$f_C = 5MHz$, $V_{OUT} = 2Vp-p$	$R_L = 1k\Omega$	-70		- dBc	
Second Harmonic Distortion			$R_L = 150\Omega$	-66] ubc	
Third Harmonic Distortion		fc = 5MHz,	$R_L = 1k\Omega$	-73		- dBc	
Third Harmonic Distortion		V _{OUT} = 2Vp-p	$R_L = 150\Omega$	-56] ubc	
Differential Phase Error	DP	NTSC	$R_L = 1k\Omega$	0.05)	degrees	
Differential Frase Life		NISC	$R_L = 150\Omega$	0.32	-	degrees	
Differential Gain Error	DG	NTSC	$R_L = 1k\Omega$	0.03	,	- %	
Differential Gain Entit			$R_L = 150\Omega$	0.04	r		
Input Noise Voltage Density	en	f = 10kHz		2		nV/√Hz	
Input Noise Current Density	in	f = 10kHz	Positive input	4		pA/√Hz	
input Noise current bensity			Negative input	5		pA/ VI IZ	
Output Impedance	Z _{OUT}	f = 10MHz		4		Ω	
Crosstalk		f = 10MHz, input ref		-55		dB	
All Hostile Off Isolation		f = 10MHz, input ref	erred	-65		dB	
Gain Matching to 0.1dB				100		MHz	
Amplifier Enable Time	ton	Delay from DISABLE VIN = 0.5V	E to 90% of Vout,	120		ns	
Amplifier Disable Time	toff	Delay from DISABLE V _{IN} = 0.5V	E to 10% of V _{OUT} ,	35		ns	
Disable/Enable Switching		Positive transient		30		w-1/	
Transient		Negative transient		15		mV	

AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4189)

 $(V_{CC}=+5V,V_{EE}=-5V,V_{IN}=0,\overline{DISABLE}_{-}\geq 3V,$ $A_{V}=+1V/V,$ $R_{F}=1600\Omega$ for $R_{L}=1k\Omega$ and $R_{F}=1100\Omega$ for $R_{L}=150\Omega$; $T_{A}=+25^{\circ}C_{-}$ unless otherwise noted.)

PARAMETER	SYMBOL	COI	NDITIONS	MIN	TYP	MAX	UNITS	
6 1161 1 2 15 5	DW	$R_L = 1k\Omega$	$R_{L} = 1k\Omega$ $R_{L} = 150\Omega$		250			
Small-Signal -3dB Bandwidth	BW _{-3dB}	$R_L = 150\Omega$			210		MHz	
5		$R_L = 1k\Omega$			1.4		15	
Peaking		$R_L = 150\Omega$			0.15		dB	
D 1 1 111 C 04 ID 51 1	DW	$R_L = 1k\Omega$			7			
Bandwidth for 0.1dB Flatness	BW0.1dB	$R_L = 150\Omega$			30		MHz	
Lange Cinnal 2dD Dandwidth	DW	2) /	$R_L = 1k\Omega$		60		N 41.1-	
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2Vp-p	$R_L = 150\Omega$		55		MHz	
Claus Data	CD	Vout = 4V step,	Positive slew		175		1//	
Slew Rate	SR	$R_L = 150\Omega$	Negative slew		150		- V/μs	
Settling Time to 0.1%	ts	V _{OUT} = 4V step			28		ns	
Die e/Fell Time		\/	Rise time		20		ns	
Rise/Fall Time		V _{OUT} = 4V step	Fall time		22			
Carriera Fara Dunancia Danas	CEDD	fc = 5MHz,	$R_L = 1k\Omega$		65		-10	
Spurious-Free Dynamic Range	SFDR	V _{OUT} = 2Vp-p	$R_L = 150\Omega$		51		dB	
Consideration		$f_C = 5MHz$, $V_{OUT} = 2Vp-p$	$R_L = 1k\Omega$		-65		-ID-	
Second Harmonic Distortion			$R_L = 150\Omega$		-63		dBc	
Third Harmonia Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$		-70		dDo	
Third Harmonic Distortion		Vout = 2Vp-p	$R_L = 150\Omega$		-51		dBc	
Differential Phase Error	DP	NTSC	$R_L = 1k\Omega$		0.02		dograda	
Differential Phase Effor	DP	INISC	$R_L = 150\Omega$		0.66		degrees	
Differential Gain Error	DG	NTSC	$R_L = 1k\Omega$		0.07		- %	
Differential Gain Error	DG	INISC	$R_L = 150\Omega$		0.18		70	
Input Noise Voltage Density	en	f = 10kHz			2		nV/√Hz	
Input Noise Current Density	İn	f = 10kHz	Positive input		4		pA/√Hz	
input Noise Current Density	in	I = IUKHZ	Negative input		5		1 PAVVITZ	
Output Impedance	Zout	f = 10MHz			4		Ω	
Crosstalk		f = 10MHz, input ref	erred		-57		dB	
All Hostile Off Isolation		f = 10MHz, input ref	erred		-55		dB	
Gain Matching to 0.1dB					24		MHz	
Amplifier Enable Time	ton	Delay from DISABLE V _{IN} = 0.5V	E to 90% of V _{OUT} ,		120		ns	
Amplifier Disable Time	toff	Delay from DISABLE VIN = 0.5V	E to 10% of V _{OUT} ,		40		ns	
Disable/Enable Switching		Positive transient			70			
Transient		Negative transient			110		mV	

AC & DYNAMIC PERFORMANCE—Dual Supplies (MAX4190)

 $(V_{CC}=+5V,~V_{EE}=-5V,~V_{IN}=0,~A_V=+2V/V;~R_F=R_G=1300\Omega$ for $R_L=1k\Omega$ and $R_F=R_G=680\Omega$ for $R_L=150\Omega,~T_A=+25^{\circ}C,~unless~otherwise~noted.)$

$Rise/Fall Time & tR & V_O = 4V step, \\ R_L = 150\Omega & Fall time & 12 \\ F$	PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C C'	DW	$R_L = 1k\Omega$			185		N 41 1-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Small-Signal -3dB Bandwidth	BWSS	$R_L = 150\Omega$			150		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$R_L = 1k\Omega$			0.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peaking		$R_L = 150\Omega$			0.1		aB
$RL = 150R\Omega \qquad	D 1 1 1 1 1 0 1 1 D E 1 1	DW	$R_L = 1k\Omega$			85		
$ \begin{array}{c} \text{Large-Signal -3dB Bandwidth} \\ \text{SR} \\ \text{SIew Rate} \\ \text{SR} \\ \text{RL} = 150\Omega \\ \text{RL} = 150\Omega \\ \text{Negative slew} \\ Nega$	Bandwidth for U. IdB Flathess	BWLS	$R_L = 150k\Omega$			75		MHZ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DW		$R_L = 1k\Omega$		95		
Set Rate SR $R_L = 150\Omega$ $R_$	Large-Signal -3dB Bandwidth	BWLS	VO = 2VP-P	$R_L = 150\Omega$		95		MHZ
Settling Time to 0.1% Is $V_O = 2V$ step Rise If Ime It $V_O = 4V$ step, $V_O = 2V$ step Rise It Ime It $V_O = 4V$ step, $V_O = 2V$ step Spurious-Free Dynamic Range Spurious-Free Dynamic Range Second Harmonic Distortion If $C = 5MHz$, $V_O = 2Vp-p$ Receive $V_O = $		CD	Vo = 4V step,	Positive slew		340		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$Rise/Fall Time \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Siew Rate	SR		Negative slew		270		V/μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Settling Time to 0.1%	ts	Vo = 2V step			22		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dia - /F - II Tim -	t _R	Vo = 4V step,	Rise time		10		
Spurious-Free Dynamic Range $V_{O} = 2Vp-p$ $R_{L} = 150\Omega$ $S_{D} = 150$ $R_{L} = 150\Omega$ $R_{L} $	RISe/Fall Time	tF		Fall time		12		ns
Second Harmonic Distortion	Consideration Francisco			$R_L = 1k\Omega$		61		-10
Second Harmonic Distortion $V_{O} = 2Vp \cdot p$ $R_{L} = 150\Omega$ -55 $R_{L} = 150\Omega$	Spurious-Free Dynamic Range			$R_L = 150\Omega$		55		aB
Third Harmonic Distortion	Conned Harmania Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$		-65		dD.o
Third Harmonic Distortion $V_{O} = 2Vp-p$ $R_{L} = 150\Omega$ -61 $R_{L} = 18\Omega$ 0.03 $R_{L} = 150\Omega$ 0.07 $R_{L} = 150\Omega$ 0.07 $R_{L} = 150\Omega$ 0.07 $R_{L} = 150\Omega$ 0.06 $0.$	Second Harmonic Distortion		$V_O = 2Vp-p$	$R_L = 150\Omega$		-55		ubc
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Third Harmania Distortion		fc = 5MHz,	$R_L = 1k\Omega$		-73		dD.o
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	THIRD HAITHOURG DISTORTION		$V_O = 2Vp-p$	$R_L = 150\Omega$		-61		UBC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Differential Cain Error	DC	NTCC	$R_L = 1k\Omega$		0.03		dogrado
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Differential Gain End	DG	INTSC	$R_L = 150\Omega$		0.07		degrees
Input Noise Current Density	Differential Phase Error	DD	NTCC	$R_L = 1k\Omega$		0.06		dograce
Input Noise Current Density $f = 10 \text{kHz}$ Negative input 5 Negati	Differential Phase Effor	DP	INISC	$R_L = 150\Omega$		0.45		degrees
Input Noise Voltage Density e_n $f = 10kHz$ 2 nV/\sqrt{Hz} Output Impedance Z_{OUT} $f = 10MHz$ 4 Ω All Hostile Off Isolation $f = 10MHz$, input referred $f = 10MHz$ $f = 10MHz$, input referred $f = 10MHz$ $f = 10MHz$, input referred $f = 10MHz$ $f = 10MHz$, input referred $f = 10MHz$ $f = 10MHz$ $f = 10MHz$, input referred $f = 10MHz$ $f = $	Input Noice Current Density		f 10k∐¬	Positive input		4		n A /a/U=
Output Impedance Z_{OUT} $f = 10MHz$ 4 Ω All Hostile Off Isolation $f = 10MHz$, input referred -60 dB Turn-On Time from DISABLE ton 120 ns Turn-Off Time from DISABLE toff 35 ns Disable/Enable Switching Positive transient 30 mV	input Noise Current Density		I = IUKHZ	Negative input		5		PAVVIIZ
All Hostile Off Isolation f = 10MHz, input referred -60 dB Turn-On Time from DISABLE ton 120 ns Turn-Off Time from DISABLE toff 35 ns Disable/Enable Switching Positive transient 30 mV	Input Noise Voltage Density	en	f = 10kHz			2		nV/√Hz
Turn-On Time from DISABLE ton 120 ns Turn-Off Time from DISABLE toff 35 ns Disable/Enable Switching Positive transient 30 mV	Output Impedance	Z _{OUT}	f = 10MHz			4		Ω
Turn-Off Time from DISABLE toFF Disable/Enable Switching BWi s Positive transient 35 ns mV	All Hostile Off Isolation		f = 10MHz, input re	f = 10MHz, input referred		-60		dB
Disable/Enable Switching Positive transient 30	Turn-On Time from DISABLE	ton				120		ns
BWI S mV	Turn-Off Time from DISABLE	toff				35		ns
Transient Negative transient 15	Disable/Enable Switching	BM/LC	Positive transient			30		m\/
	Transient	DMF2	Negative transient			15		mv

AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4188)

 $(V_{CC} = +5V, V_{EE} = 0, V_{IN} = 2.5V, \overline{DISABLE} \ge 3V, R_L \text{ to } V_{CC} / 2, A_V = +2V/V, R_F = R_G = 1.1k\Omega \text{ for } R_L = 1k\Omega \text{ to } V_{CC} / 2 \text{ and } R_F = R_G = 620\Omega \text{ for } R_L = 150\Omega; T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	COI	NDITIONS	MIN	TYP	MAX	UNITS	
0 1101 1 0 15 5 1 1 111	5144	$R_L = 1k\Omega$			185			
Small-Signal -3dB Bandwidth	BW-3dB	$R_L = 150\Omega$			145		— MHz	
D 11		$R_L = 1k\Omega$			0.1		ID	
Peaking		$R_L = 150\Omega$			0.1		- dB	
D	DW	$R_L = 1k\Omega$			110		N 41 1-	
Bandwidth for 0.1dB Flatness	BW _{0.1dB}	$R_L = 150\Omega$			65		MHz	
Large Cignel 2dD Dandwidth	D\\\	V 2Vm m	$R_L = 1k\Omega$		80		N 41 1-	
Large-Signal -3dB Bandwidth	BW _{LS}	V _{OUT} = 2Vp-p	$R_L = 150\Omega$		80		MHz	
Slew Rate	CD	Vout = 2V step,	Positive slew		300		V/µs	
Siew Rate	SR	$R_L = 150\Omega$	Negative slew		230		V/µs	
Settling Time to 0.1%	ts	V _{OUT} = 2V step	•		20		ns	
Rise/Fall Time		Vout = 2V step	Rise time		8		nc	
KISE/Fall Tillle		VOU1 = 2v step	Fall time		9		ns	
Courious Froe Dynamic Dange	SFDR	$f_C = 5MHz$,	$R_L = 1k\Omega$		66		- dB	
Spurious-Free Dynamic Range	SFUR	$V_{OUT} = 2Vp-p$	$R_L = 150\Omega$		56		ub	
Second Harmonic Distortion		$f_C = 5MHz$, $V_{OUT} = 2Vp-p$	$R_L = 1k\Omega$		-76		dBc	
Second Harmonic Distortion			$R_L = 150\Omega$		-59		ubc	
Third Harmonic Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$		-66		dBc	
Third Harmonic Distortion		$V_{OUT} = 2V_{p-p}$	$R_L = 150\Omega$		-56		ubc	
Differential Phase Error	DP	NTSC	$R_L = 1k\Omega$		0.06		degrees	
Dilierential i nase Enoi	Di	NISC	$R_L = 150\Omega$		0.34		degree	
Differential Gain Error	DG	NTSC	$R_L = 1k\Omega$		0.02		- %	
Differential Gain Error		NISC	$R_L = 150\Omega$		0.05		70	
Input Noise Voltage Density	en	f = 10kHz			2		nV/√Hz	
Input Noise Current Density	in	f = 10kHz	Positive input		4		pA/√Hz	
input Noise current Density	ווי	T = TORTIZ	Negative input		5		pA/ VI IZ	
Output Impedance	Z _{OUT}	f = 10MHz			4		Ω	
Crosstalk		f = 10MHz, input ref			-55		dB	
All Hostile Off Isolation		f = 10MHz, input ref	erred		-65		dB	
Gain Matching to 0.1dB					40		MHz	
Amplifier Enable Time	ton	Delay from DISABLE V _{IN} = 3V	E to 90% of Vout,		120		ns	
Amplifier Disable Time	toff	Delay from DISABLE V _{IN} = 3V	E to 10% of V _{OUT} ,		35		ns	
Disable/Enable Switching		Positive transient			30			
Transient		Negative transient			15		mV	

AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4189)

 $(V_{CC} = +5V, V_{EE} = 0, V_{IN} = 2.5V, \overline{DISABLE} \ge 3V, R_L \text{ to } V_{CC} / 2, A_V = +1V/V, R_F = 1500\Omega \text{ for } R_L = 1k\Omega \text{ and } R_F = 1600\Omega \text{ for } R_L = 150\Omega; T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CON	NDITIONS	MIN TYP	MAX	UNITS	
0 1101 1015 5 11111	5144	$R_L = 1k\Omega$		230			
Small-Signal -3dB Bandwidth	BW-3dB	$R_L = 150\Omega$		190		MHz	
D 11		$R_L = 1k\Omega$		1.4		ID	
Peaking		$R_L = 150\Omega$		0.15		dB	
D	DIM	$R_L = 1k\Omega$		7			
Bandwidth for 0.1dB Flatness	BW _{0.1dB}	$R_L = 150\Omega$		40		MHz	
Large Clausel 2dD Dandwidth	DW	2) /	$R_L = 1k\Omega$	50		N 41 1-	
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2Vp-p	$R_L = 150\Omega$	45		MHz	
Clau Data	CD	Vout = 2V step,	Positive slew	160		1//	
Slew Rate	SR	$R_L = 150\Omega$	Negative slew	135		- V/µs	
Settling Time to 0.1%	ts	V _{OUT} = 2V step		25		ns	
Rise/Fall Time		Varia 2V stop	Rise time	12		100	
RISE/Fall Time		V _{OUT} = 2V step	Fall time	15		ns	
Courleys Free Dynamic Denge	SFDR	$f_C = 5MHz$,	$R_L = 1k\Omega$	57		-10	
Spurious-Free Dynamic Range	SFDR	V _{OUT} = 2Vp-p	$R_L = 150\Omega$	47		dB	
Cocond Harmonic Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$	-58		dDo	
Second Harmonic Distortion		Vout = 2Vp-p	$R_L = 150\Omega$	-54		dBc	
Third Harmonic Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$	-57		dBc	
THII d Hairmonic Distortion		V _{OUT} = 2Vp-p	$R_L = 150\Omega$	-47		T UBC	
Differential Phase Error	DP	NTSC	$R_L = 1k\Omega$	0.04		degrees	
Differential Friase Life	DF	NISC	$R_L = 150\Omega$	0.66		- degrees	
Differential Gain Error	DG	NTSC	$R_L = 1k\Omega$	0.06		- %	
Dillerential Gain Elloi	DG	INISC	$R_L = 150\Omega$	0.17		70	
Input Noise Voltage Density	en	f = 10kHz	$R_{L} = 150\Omega \qquad 0.66$ $R_{L} = 1k\Omega \qquad 0.06$			nV/√Hz	
Input Noise Current Density	in	f = 10kHz	Positive input	4		pA/√Hz	
input Noise Current Density	l 'm	I - TORTIZ	Negative input	5		PAMIZ	
Output Impedance	Z _{OUT}	f = 10MHz		4		Ω	
Crosstalk		f = 10MHz, input ref	erred	-57		dB	
All Hostile Off Isolation		f = 10MHz, input ref	erred	-55		dB	
Gain Matching to 0.1dB				25		MHz	
Amplifier Enable Time	ton	Delay from DISABLE V _{IN} = 3V	E to 90% of Vout,	120		ns	
Amplifier Disable Time	toff	Delay from DISABLE V _{IN} = 3V	to 10% of V _{OUT} ,	40		ns	
Disable/Enable Switching		Positive transient		70		/	
Transient		Negative transient		110		mV	

Note 1: Input Offset Voltage does not include the effect of IBIAS flowing through RF/RG.

Note 2: Does not include current through external feedback network.

Note 3: Over operating supply-voltage range.

AC & DYNAMIC PERFORMANCE—Single Supply (MAX4190)

 $(V_{CC}=+5V,\,V_{EE}=0,\,V_{IN}=0,\,A_V=+2V/V;\,R_F=R_G=1500\Omega$ for $R_L=1k\Omega$ and $R_F=R_G=750\Omega$ for $R_L=150\Omega$, $T_A=+25^{\circ}C$, unless otherwise noted)

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
Crock Cigrool 2dD Dondwidth	D\\\	$R_L = 1k\Omega$			165		NAL I -
Small-Signal -3dB Bandwidth	BW _{-3dB}	$R_L = 150\Omega$			135		MHz
De altie e		$R_L = 1k\Omega$			0.1		-10
Peaking		$R_L = 150\Omega$			0.1		dB
Daniel del de la Contra de la C	DW	$R_L = 1k\Omega$			70		N 41 1-
Bandwidth for 0.1dB Flatness	BW _{0.1dB}	$R_L = 150\Omega$			65		MHz
	DW		$R_L = 1k\Omega$		75		
Large-Signal -3dB Bandwidth	BWLS	$V_O = 2Vp-p$	$R_L = 150\Omega$		75		MHz
Slew Rate	SR	V _O = 2V step,	Positive slew		290		1//
Siew Raie) SR	$R_L = 150\Omega$	Negative slew		220		- V/μs
Settling Time to 0.1%	ts	V _O = 2V step	<u> </u>		20		ns
Di /F-II Ti	t _R	V _O = 2V step,	Rise time		8		
Rise/Fall Time	t _F	$R_L = 150\Omega$	Fall time		9		ns
Caurious Free Dunamia Dange		$f_C = 5MHz$,	$R_L = 1k\Omega$		59		4D
Spurious-Free Dynamic Range		$V_O = 2Vp-p$	$R_L = 150\Omega$		55		- dB
Cocond Harmonic Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$		-59		dDo
Second Harmonic Distortion		$V_O = 2Vp-p$	$R_L = 150\Omega$		-55		dBc
Third Harmonic Distortion		$f_C = 5MHz$,	$R_L = 1k\Omega$		-68		dBc
		$V_O = 2Vp-p$	$R_L = 150\Omega$		-60		ubc
Differential Gain Error	DG	NTSC	$R_L = 1k\Omega$		0.02		%
Differential Gain End	DG	IVISC	$R_L = 150\Omega$		0.08		70
Differential Phase Error	DP	NTSC	$R_L = 1k\Omega$		0.07		dograda
Differential Phase Effor	DP	INTSC	$R_L = 150\Omega$		0.43		degrees
Input Noise Voltage Density		f = 10kHz			2		nV/√Hz
Input Noise Current Density		f = 10kHz	Positive input		4		pA/√Hz
Input Noise Current Density	ln	I = IUKHZ	Negative input		5		PANTZ
Output Impedance	Zout	f = 10MHz			4		Ω
All Hostile Off Isolation		f = 10MHz, input re	eferred, $R_L = 150\Omega$		-60		dB
Turn-On Time from DISABLE	ton				120		ns
Turn-Off Time from DISABLE	toff				35		ns
Disable/Enable Switching	BWLS	Positive transient			30		mV
Transient	DWF2	Negative transient			15] ""

_Typical Operating Characteristics

 $(V_{CC} = +5V, V_{EE} = -5V, T_A = +25^{\circ}C, unless otherwise noted.)$

_Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, T_A = +25^{\circ}C, unless otherwise noted.)$

_Typical Operating Characteristics (continued)

(VCC = +5V, VEE = -5V, T_A = +25°C, unless otherwise noted.)

_Typical Operating Characteristics (continued)

($V_{CC} = +5V$, $V_{EE} = -5V$, $T_A = +25$ °C, unless otherwise noted.)

_Typical Operating Characteristics (continued)

($V_{CC} = +5V$, $V_{EE} = -5V$, $T_A = +25$ °C, unless otherwise noted.)

Pin Descriptions

PIN						
MAX4188/MAX4189		MAX4190	NAME	FUNCTION		
so	QSOP	SO/µMAX				
1	1	_	DISABLE1	Disable Control Input for Amplifier 1. Amplifier 1 is enabled when $\overline{\text{DISABLE1}} \ge (V_{CC} - 3V)$.		
2	2	_	DISABLE2	Disable Control Input for Amplifier 2. Amplifier 2 is enabled when $\overline{\text{DISABLE2}} \ge (V_{CC} - 3V)$.		
3	3	_	DISABLE3	Disable Control Input for Amplifier 3. Amplifier 3 is enabled when $\overline{\text{DISABLE3}} \ge (\text{V}_{\text{CC}} - 3\text{V})$.		
4	4	7	Vcc	Positive Power Supply. Connect V _{CC} to +5V.		
5	5	_	IN1+	Amplifier 1 Noninverting Input		
6	6	_	IN1-	Amplifier 1 Inverting Input		
7	7	_	OUT1	Amplifier 1 Output		
_	8, 9	1, 5	N.C.	No Connect. Not internally connected.		
8	10	_	OUT3	Amplifier 3 Output		
9	11	_	IN3-	Amplifier 3 Inverting Input		
10	12	_	IN3+	Amplifier 3 Noninverting Input		
11	13	4	VEE	Negative Power Supply. Connect V_{EE} to -5V or to ground for single-supoperation.		
12	14	_	IN2+	Amplifier 2 Noninverting Input		
13	15	_	IN2-	Amplifier 2 Inverting Input		
14	16	_	OUT2	Amplifier 2 Output		
_	_	2	IN-	Amplifier Inverting Input		
_	_	3	IN+	Amplifier Noninverting Input		
_	_	6	OUT	Amplifier Output		
_	_	8	DISABLE	Disable Control Input. Amplifier is enabled when $\overline{\text{DISABLE}} \ge (V_{CC} - 2V)$ and disabled when $\overline{\text{DISABLE}} \le (V_{CC} - 3V)$.		

Detailed Description

The MAX4188/MAX4189/MAX4190 are very low-power, current-feedback amplifiers featuring bandwidths up to 250MHz, 0.1dB gain flatness to 80MHz, and low differential gain (0.03%) and phase (0.05°) errors. These amplifiers achieve very high bandwidth-to-power ratios while maintaining low distortion, wide signal swing, and excellent load-driving capabilities. They are optimized for $\pm 5V$ supplies but are also fully specified for single $\pm 5V$ operation. Consuming only 1.5mA per amplifier, these devices have ± 55 mA output current drive capability and achieve low distortion even while driving 150Ω loads.

Wide bandwidth, low power, low differential phase/gain error, and excellent gain flatness make the MAX4188 family ideal for use in portable video equipment such as video cameras, video switchers, and other battery-powered equipment. Their two-stage design provides higher gain and lower distortion than conventional single-stage, current-feedback amplifiers. This feature, combined with a fast settling time, makes these devices suitable for buffering high-speed analog-to-digital converters.

The MAX4188/MAX4189/MAX4190 have a high-speed, low-power disable mode that is activated by driving the amplifiers' DISABLE input low. In the disable mode, the

amplifiers achieve very high isolation from input to output (65dB at 10MHz), and the outputs are placed into a highimpedance state. These amplifiers achieve low switching-transient glitches (<45mVp-p) when switching between enable and disable modes. Fast enable/disable times (120ns/35ns), along with high off-isolation and low switching transients, allow these devices to be used as high-performance, high-speed multiplexers. This is achieved by connecting the outputs of multiple amplifiers together and controlling the DISABLE inputs to enable one amplifier and disable all others. The disabled amplifiers present a very light load (1µA leakage current and 3.5pF capacitance) to the active amplifier's output. The feedback network impedance of all the disabled amplifiers must still be considered when calculating the total load on the active amplifier output. Figure 1 shows an application circuit using the MAX4188 as a 3:1 video multiplexer.

The $\overline{\text{DISABLE}}$ logic threshold is typically V_{CC} - 2.5V, independent of V_{EE}. For a single +5V supply or dual ±5V supplies, the disable inputs are CMOS-logic compatible. The amplifiers default to the enabled mode if the $\overline{\text{DISABLE}}$ pin is left unconnected. If the $\overline{\text{DISABLE}}$ pin is left floating, take proper care to ensure that no high-frequency signals are coupled to this pin, as this may cause false triggering.

_Applications Information

Theory of Operation

The MAX4188/MAX4189/MAX4190 are current-feedback amplifiers, and their open-loop transfer function is expressed as a transimpedance, $\Delta V_{OUT}/\Delta I_{IN}$, or T_Z . The frequency behavior of the open-loop transimpedance is similar to the open-loop gain of a voltage-mode feedback amplifier. That is, it has a large DC value and decreases at approximately 6dB per octave.

Analyzing the follower with gain, as shown in Figure 2, yields the following transfer function:

$$V_{OUT}$$
 / V_{IN} = G x [(T_Z (S) / T_Z(s) + G x (R_{IN} + R_F)] where G = A_{VCL} = 1 + (R_F / R_G), and R_{IN} = 1/g_M \cong 300 Ω .

At low gains, G x R_{IN} < R_F. Therefore, the closed-loop bandwidth is essentially independent of closed-loop gain. Similarly $T_Z > R_F$ at low frequencies, so that:

$$\frac{V_{OUT}}{V_{IN}} = G = 1 + (R_F / R_G)$$

Figure 1. High-Speed 3:1 Video Multiplexer

Figure 2. Current-Feedback Amplifier

Layout and Power-Supply Bypassing As with all wideband amplifiers, a carefully laid out printed circuit board and adequate power-supply bypassing are essential to realizing the optimum AC performance of MAX4188/MAX4189/MAX4190. The PC board should have at least two layers. Signal and power should be on one layer. A large low-impedance ground plane, as free of voids as possible, should be the other layer. With multilayer boards, locate the ground plane on a layer that incorporates no signal or power traces.

Do not use wire-wrap boards or breadboards and sockets. Wire-wrap boards are too inductive. Breadboards and sockets are too capacitive. Surface-mount components have lower parasitic inductance and capacitance, and are therefore preferable to through-hole components. Keep lines as short as possible to minimize parasitic inductance, and avoid 90° turns. Round all corners. Terminate all unused amplifier inputs to ground with a 100Ω or 150Ω resistor.

The MAX4188/MAX4189/MAX4190 achieve a high degree of off-isolation (65dB at 10MHz) and low crosstalk (-55dB at 10MHz). The input and output signal traces must be kept from overlapping to achieve high off-isolation. Coupling between the signal traces of different channels will degrade crosstalk. The signal traces of each channel should be kept from overlapping with the signal traces of the other channels.

V_{IN} — R_S R_G R_G V_{OUT} R_O V_{OUT} R_O V_{OUT} MAX4188 MAX4189 MAX4190 V_{OUT} = -(R_F / R_G) (V_{IN})

Figure 3a. Inverting Gain Configuration

Adequate bypass capacitance at each supply is very important to optimize the high-frequency performance of these amplifiers. Inadequate bypassing will also degrade crosstalk rejection, especially with heavier loads. Use a 1µF capacitor in parallel with a 0.01µF to 0.1µF capacitor between each supply pin and ground to achieve optimum performance. The bypass capacitors should be located as close to the device as possible. A 10µF low-ESR tantalum capacitor may be required to produce the best settling time and lowest distortion when large transient currents must be delivered to a load.

Choosing Feedback and Gain Resistors The optimum value of the external-feedback (R_F) and gain-setting (R_G) resistors used with the MAX4188/MAX4189/MAX4190 depends on the closed-loop gain and the application circuit's load. Table 1 lists the optimum resistor values for some specific gain configurations. One-percent resistor values are preferred to maintain consistency over a wide range of production lots. Figures 3a and 3b show the standard inverting and noninverting configurations. Note that the noninverting circuit gain (Figure 3b) is 1 plus the magnitude of the inverting closed-loop gain. Otherwise, the two circuits are identical.

Figure 3b. Noninverting Gain Configuration

Table 1a. MAX4188 Recommended Component Values

		DU	JAL SUPP	LIES		SINGLE SUPPLY				
COMPONENT/ BW	A _V = +2V/V			A _V = +5		A _V = +2V/V			A _V = +5 V/V	A _V = +10 V/V
5 **	R _L = 1kΩ	RL = 1 50 Ω	RL = 100Ω	R _L = 1kΩ	R _L = 1kΩ	R _L = 1kΩ	RL = 150Ω	RL = 100Ω	R _L = 1kΩ	R _L = 1kΩ
R _F (Ω)	910	560	390	470	470	1.1k	620	430	470	470
R _G (Ω)	910	560	390	120	51	1.1k	620	430	120	51
-3dB BW (MHz)	200	160	145	70	30	185	145	130	70	30

Table 1b. MAX4189 Recommended Component Values

OOMBONENT!		DUAL SUPPLIES		SINGLE SUPPLY			
COMPONENT/ BW		A _V = +1V/V		Ay = +1V/V			
	$R_L = 1k\Omega$	$R_L = 150\Omega$	$R_L = 100\Omega$	$R_L = 1k\Omega$	$R_L = 150\Omega$	$R_L = 100\Omega$	
R _G (Ω)	1.6k	1.1k	680	1.5k	1.6k	910	
-3dB BW (MHz)	250	210	185	230	190	165	

Table 1c. MAX4190 Recommended Component Values

		DU	JAL SUPP	LIES		SINGLE SUPPLY				
COMPONENT/ BW	A _V = +2V/V			A _V = +5 (V/V)	A _V = +10 (V/V)	0 A _V = +1V/V		A _V = +5 V/V	A _V = +10 V/V	
5	RL = 1kΩ	R _L = 150Ω	R _L = 100Ω	RL = 1kΩ	RL = 1kΩ	RL = 1kΩ	R _L = 150Ω	R _L = 100Ω	RL = 1kΩ	RL = 1kΩ
R _F (Ω)	1.3k	680	510	470	470	1.5k	750	510	470	470
R _G (Ω)	1.3k	680	510	120	51	1.5k	750	510	120	51
-3dB BW (MHz)	185	180	135	70	30	165	135	125	70	30

DC and Noise Errors

Several major error sources must be considered in any op amp. These apply equally to the MAX4188/MAX4189/MAX4190. Offset-error terms are given by the equation below. Voltage and current-noise errors are root-square summed and are therefore computed separately. In Figure 4, the total output offset voltage is determined by the following factors:

- The input offset voltage (V_{OS}) times the closed-loop gain (1 = R_F / R_G).
- The positive input bias current (I_{B+}) times the source resistor (R_S) (usually 50Ω or 75Ω), plus the negative input bias current (I_{B-}) times the parallel combination of R_G and R_F. In current-feedback amplifiers, the input bias currents at the IN+ and IN-terminals do not track each other and may have opposite polarity, so there is no benefit to matching the resistance at both inputs.

The equation for the total DC error at the output is:

$$V_{OUT} = \left[(I_{B+})R_S + (I_{B-})(R_F \parallel R_G) + V_{OS} \right] \left(1 + \frac{R_F}{R_G} \right)$$

Figure 4. Output Offset Voltage

The total output-referred noise voltage is:

$$\begin{split} e_{n(OUT)} &= \left(1 + \frac{R_F}{R_G}\right) x \\ \sqrt{\left[\left(i_{n+}\right)\!R_S\right]^2 + \left[\left(i_{n-}\right)\!R_F \mid\mid \ R_G\right]^2 + \left(e_n\right)^2} \end{split}$$

The MAX4188/MAX4189/MAX4190 have a very low, $2nV/\sqrt{Hz}$ noise voltage. The current noise at the positive input (in+) is $4pA/\sqrt{Hz}$, and the current noise at the inverting input is $5pA/\sqrt{Hz}$.

An example of the DC error calculations, using the MAX4188 typical data and typical operating circuit where R_F = R_G = $560k\Omega$ (R_F || R_G = 280Ω), and R_S = 37.5Ω , gives the following:

$$V_{OUT} = \begin{bmatrix} (1 \times 10^{-6}) \times 37.5 + (2 \times 10^{-6}) 280 \\ + 1.5 \times 10^{-3} \end{bmatrix} \times (1+1)$$

 $V_{OLIT} = 4.1 \text{mV}$

Calculating the total output noise in a similar manner yields:

$$e_{n(OUT)} = (1+1) \sqrt{ \left(4 \times 10^{-12} \times 37.5 \right)^2 + \left(5 \times 10^{-12} \times 280 \right)^2 + \left(2 \times 10^{-9} \right)^2 }$$

 $e_{n(OUT)} = 4.8 nV / \sqrt{Hz}$

With a 200MHz system bandwidth, this calculates to $68\mu V_{RMS}$ (approximately $408\mu V_{P-P}$, choosing the six-sigma value).

Video Line Driver

The MAX4188/MAX4189/MAX4190 are well suited to drive coaxial transmission lines when the cable is terminated at both ends (Figure 5). Cable frequency response can cause variations in the signal's flatness. See Table 1 for optimum RF and RG values.

Driving Capacitive Loads

The MAX4188/MAX4189/MAX4190 are optimized for AC performance. Reactive loads decrease phase margin and may produce excessive ringing and oscillation. Unlike most high-speed amplifiers, the MAX4188/ MAX4189/MAX4190 are tolerant of capacitive loads up to 50pF. Capacitive loads greater than 50pF may cause ringing and oscillation. Figure 6a shows a circuit that eliminates this problem. Placing the small (usually 15 Ω to 33 Ω) isolation resistor, Rs, before the reactive load prevents ringing and oscillation. At higher capacitive loads, the interaction of the load capacitance and isolation resistor controls AC performance. Figures 6b and 6c show the MAX4188 and MAX4189 frequency response with a 100pF capacitive load. Note that in each case, gain peaking is substantially reduced when the 20Ω resistor is used to isolate the capacitive load from the amplifier output.

Figure 5. Video Line Driver Application

Figure 6a. Using an Isolation Resistor (R_S) for High Capacitive Loads

Figure 6b. Normalized Frequency Response with 100pF Capacitive Load

Figure 6c. Normalized Frequency Response with 100pF Capacitive Load

_Chip Information

MAX4188/4189

TRANSISTOR COUNT: 336

MAX4190

TRANSISTOR COUNT: 112

SUBSTRATE CONNECTED TO VEE

__Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4189ESD	-40°C to +85°C	14 SO
MAX4189EEE	-40°C to +85°C	16 QSOP
MAX4190ESD	-40°C to +85°C	8 SO
MAX4190EEE	-40°C to +85°C	8 μMAX

Pin Configurations

