

General Description

The MC34063A is a monolithic control circuit containing the primary functions required for DC-to-DC converters. This device consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. The product is specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

Features

- Operation from 3.0 V to 40 V Input.
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference
- Pb-Free Package

Schematic Diagram

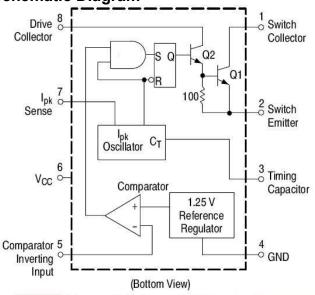
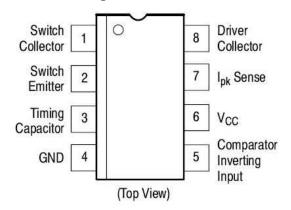



Figure 1. Schematic Diagram

Pin Configuration

Ordering Information

Part #	Marked	Package
MC34063AM	34063M	SOIC-8
MC34063AN	34063N	PDIP-8

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	Vdc
Comparator Input Voltage Range	V _{IR}	-0.3 to +40	Vdc
Switch Collector Voltage	V _{C(switch)}	40	Vdc
Switch Emitter Voltage (V _{Pin 1} = 40 V)	V _{E(switch)}	40	Vdc
Switch Collector to Emitter Voltage	VCE(switch)	40	Vdc
Driver Collector Voltage	V _{C(driver)}	40	Vdc
Driver Collector Current (Note 1)	l _{C(driver)}	100	mA
Switch Current	Isw	1.5	А
Power Dissipation and Thermal Characteristics			1
Plastic Package, 8L PDIP			1
T _A = 25°C	P _D	1.25	W
Thermal Resistance	R _{θJA}	100	°C/W
SOIC Package			Ĭ
T _A = 25°C	PD	625	mW
Thermal Resistance	R _{0JA}	160	°C/W
Operating Junction Temperature	Tj	+150	°C
Operating Ambient Temperature Range	TA		°C
MC34063A		0 to +70	
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Maximum package power dissipation limits must be observed.

This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL-STD-883, Method 3015. Machine Model Method 400 V.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, T_A = T_{low} to T_{high} [Note 4], unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATOR	7.00				
Frequency (V _{Pin 5} = 0 V, C _T = 1.0 nF, T _A = 25°C)	f _{osc}	24	33	42	kHz
Charge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	I _{chg}	24	35	42	μΑ
Discharge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	Idischg	140	220	260	μА
Discharge to Charge Current Ratio (Pin 7 to V _{CC} , T _A = 25°C)	I _{dischg} /I _{chg}	5.2	6.5	7.5	22
Current Limit Sense Voltage (I _{chg} = I _{dischg} , T _A = 25°C)	Vipk(sense)	250	300	350	m∨
OUTPUT SWITCH (Note 5)	:14:1: 32: 01				
Saturation Voltage, Darlington Connection (I _{SW} = 1.0 A, Pins 1, 8 connected)	VCE(sat)	1751	1.0	1.3	V
Saturation Voltage (Note 6) (I _{SW} = 1.0 A, R _{Pin 8} = 82 Ω to V _{CC} , Forced $\beta \approx 20$)	V _{CE(sat)}	-	0.45	0.7	V
DC Current Gain (I _{SW} = 1.0 A, V _{CE} = 5.0 V, T _A = 25°C)	h _{FE}	50	75	255	153
Collector Off-State Current (V _{CE} = 40 V)	I _{C(off)}		0.01	10	μΑ
COMPARATOR					
Threshold Voltage TA = 25°C	V _{th}	1.225	1.25	1.275	V
Threshold Voltage Line Regulation (V _{CC} = 3.0 V to 40 V) MC34063A	Reg _{line}	=	1.4	5.0	m∨
Input Bias Current (V _{in} = 0 V)	I _{IB}	-	-20	-400	nΑ
TOTAL DEVICE					
Supply Current (V_{CC} = 5.0 V to 40 V, C_T = 1.0 nF, Pin 7 = V_{CC} , $V_{Pin 5}$ > V_{th} , Pin 2 = GND, remaining pins open)	Icc		:=	4.0	mA
ON HERE'S MEG.					

Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
 If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a

non–Darlington configuration is used, the following output drive condition is recommended: Forced β of output switch : $\frac{I_C \text{ output}}{I_C \text{ driver} - 7.0 \text{ mA}^*} \ge 10$

^{*} The 100 Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

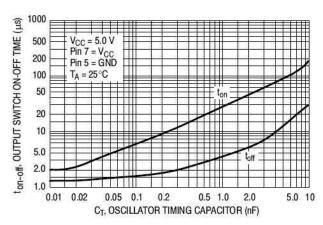


Figure 2. Output Switch On-Off Time versus Oscillator Timing Capacitor

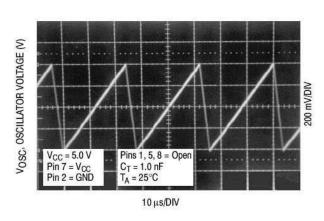


Figure 3. Timing Capacitor Waveform

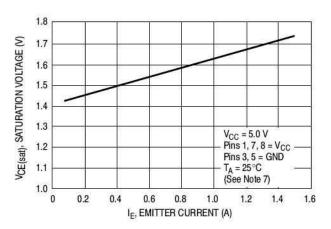


Figure 4. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

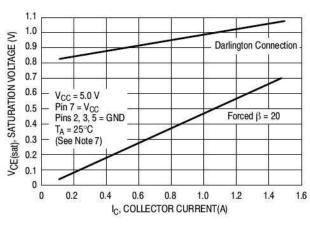


Figure 5. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current

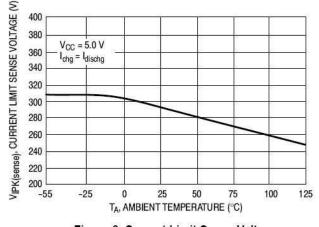


Figure 6. Current Limit Sense Voltage versus Temperature

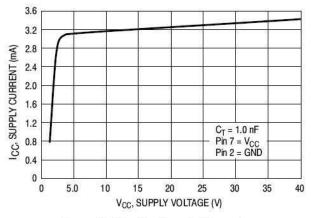
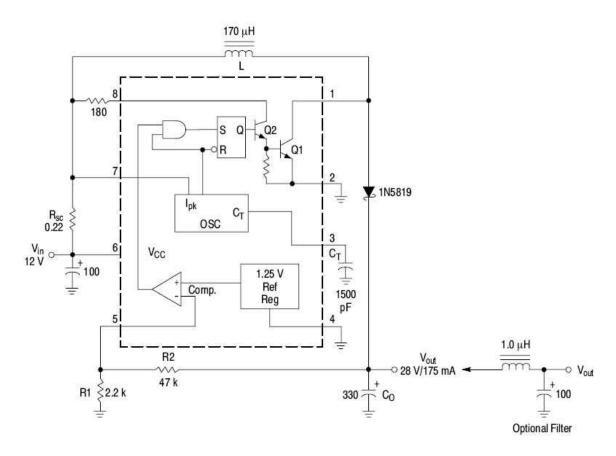



Figure 7. Standby Supply Current versus Supply Voltage

6. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

MC34063A

Test	Conditions	Results	
Line Regulation	V _{in} = 8.0 V to 16 V, I _O = 175 mA	30 mV = ±0.05%	
Load Regulation	V _{in} = 12 V, I _O = 75 mA to 175 mA	10 mV = ±0.017%	
Output Ripple	V _{in} = 12 V, I _O = 175 mA	400 m√pp	
Efficiency	V _{in} = 12 V, I _O = 175 mA	87.7%	
Output Ripple With Optional Filter	V _{in} = 12 V, I _O = 175 mA	40 mVpp	

Figure 8. Step-Up Converter

(See Note 8)

MC34063A

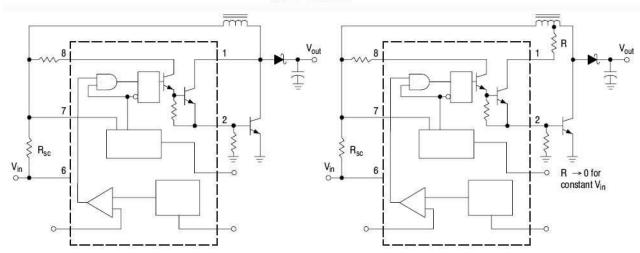
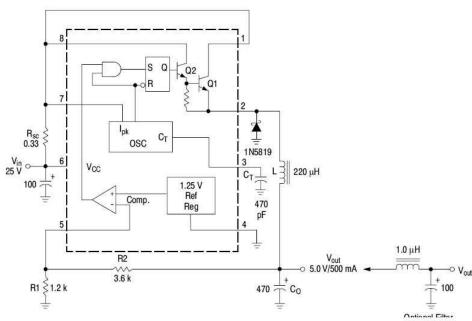


Figure 9. External Current Boost Connections for I_C Peak Greater than 1.5 A


9a. External NPN Switch

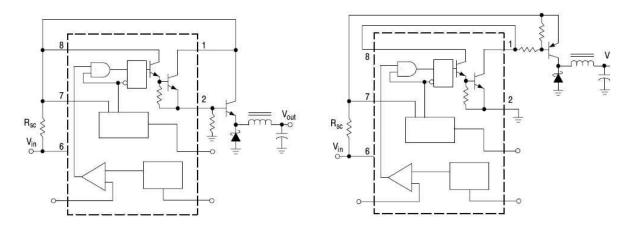
9b. External NPN Saturated Switch

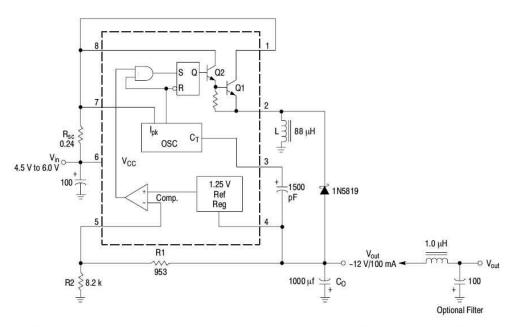
7. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 30 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

MC34063A

Test	Conditions	Results
Line Regulation	V _{in} = 15 V to 25 V, I _O = 500 mA	12 mV = ±0.12%
Load Regulation	V _{in} = 25 V, I _O = 50 mA to 500 mA	3.0 mV = ±0.03%
Output Ripple	V _{in} = 25 V, I _O = 500 mA	120 mVpp
Short Circuit Current	$V_{in} = 25 \text{ V}, R_L = 0.1 \Omega$	1.1 A
Efficiency	V _{in} = 25 V, I _O = 500 mA	83.7%
Output Ripple With Optional Filter	V _{in} = 25 V, I _O = 500 mA	40 m√pp

Figure 10. Step-Down Converter




Figure 11. External Current Boost Connections for I_C Peak Greater than 1.5 A

11a. External NPN Switch

11b. External PNP Saturated Switch

MC34063A

Test	Conditions	Results
Line Regulation	V _{in} = 4.5 V to 6.0 V, I _O = 100 mA	3.0 mV = ±0.012%
Load Regulation	V _{in} = 5.0 V, I _O = 10 mA to 100 mA	0.022 V = ±0.09%
Output Ripple	V _{in} = 5.0 V, I _O = 100 mA	500 m√pp
Short Circuit Current	$V_{in} = 5.0 \text{ V}, R_L = 0.1 \Omega$	910 mA
Efficiency	V _{in} = 5.0 V, I _O = 100 mA	62.2%
Output Ripple With Optional Filter	V _{in} = 5.0 V, I _O = 100 mA	70 mVpp

Figure 12. Voltage Inverting Converter

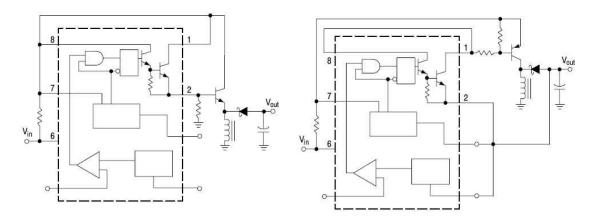


Figure 13. External Current Boost Connections for I_C Peak Greater than 1.5 A

13a. External NPN Switch

13b. External PNP Saturated Switch

MC34063A

Calculation	Step-Up	Step-Down	Voltage-Inverting
t _{on} /t _{off}	$\frac{V_{\text{out}} + V_{\text{F}} - V_{\text{in(min)}}}{V_{\text{in(min)}} - V_{\text{sat}}}$		
(t _{on} + t _{off})	<u>1</u>	<u>1</u>	<u>1</u>
t _{off}	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}} + 1}$	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}} + 1}$	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}} + 1}$
t _{on}	$(t_{on} + t_{off}) - t_{off}$	(t _{on} + t _{off}) - t _{off}	$(t_{on} + t_{off}) - t_{off}$
C _T	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}
I _{pk(switch)}	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$	^{2l} out(max)	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$
R _{sc}	0.3/lpk(switch)	0.3/I _{pk(switch)}	0.3/I _{pk(switch)}
L _(min)	$\left(\frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}}\right) t_{on(max)}$	$\left(\frac{(\bigvee_{in(min)} - \bigvee_{sat} - \bigvee_{out})}{I_{pk(switch)}}\right) t_{on(max)}$	$\left(\frac{(V_{\text{in(min)}} - V_{\text{sat}})}{I_{\text{pk(switch)}}}\right) t_{\text{on(max)}}$
Со	9 <mark>l_{out}ton / V_{ripple(pp)}</mark>	I _{pk(switch)} (t _{on} + t _{off}) 8V _{ripple(pp)}	9 <mark>lout^ton Vripple(pp)</mark>

V_{sat} = Saturation voltage of the output switch.

The following power supply characteristics must be chosen:

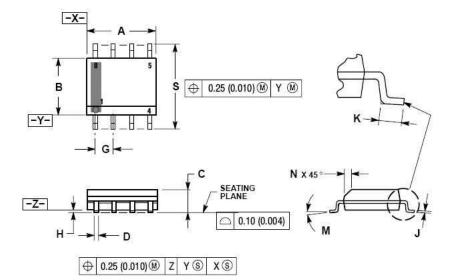
Vin - Nominal input voltage.

 V_{out} – Desired output voltage, $|V_{out}| = 1.25 \left(1 + \frac{R2}{R1}\right)$

I_{out} - Desired output current.

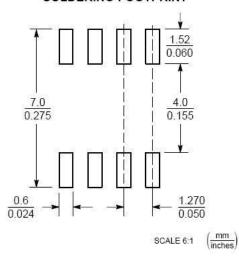
thin - Minimum desired output switching frequency at the selected values of V_{in} and I_O.

V_{ripple(pp)} - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.


Figure 14. Design Formula Table

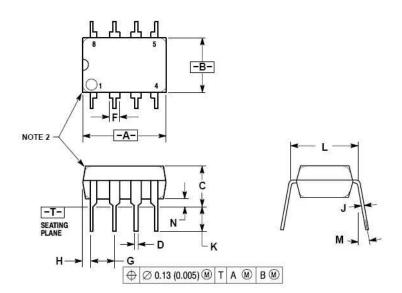
V_F = Forward voltage drop of the output rectifier.

MC34063A PACKAGE DIMENSIONS


SOIC-8

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	BSC	0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	


SOLDERING FOOTPRINT*

MC34063A PACKAGE DIMENSIONS

PDIP-8

- NOTES:
 1. DIMENSION L TO CENTER OF LEAD WHEN
- FORMED PARALLEL.
 2. PACKAGE CONTOUR OPTIONAL (ROUND OR
- SQUARE CORNERS).
 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
M		10°		100
M	0.76	1.01	0.030	0.040