

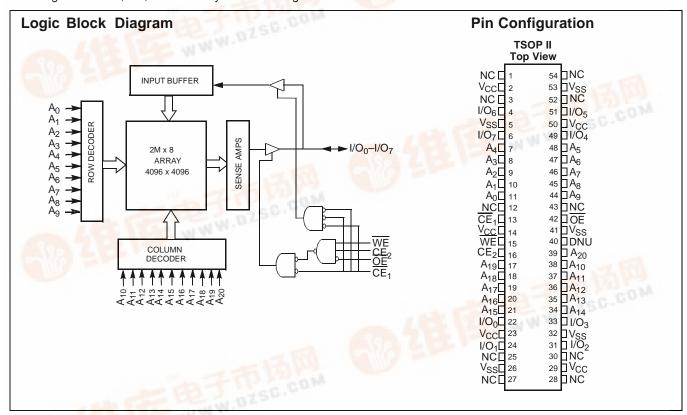
CY7C1069AV33

2M x 8 Static RAM

Features

- High speed
 - $-t_{AA} = 8, 10, 12 \text{ ns}$
- Low active power
 - -1080 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- 2.0V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features

Functional Description

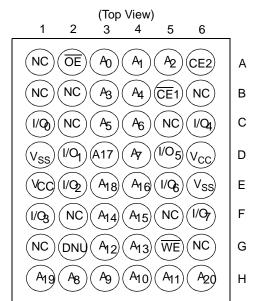

The CY7C1069AV33 is a high-performance CMOS Static RAM organized as 2,097,152 words by 8 bits. Writing to the

device is accomplished by enabling the chip (by taking \overline{CE}_1 LOW and CE₂ HIGH) and Write Enable (WE) inputs LOW.

Reading from the device is accomplished by enabling the chip (CE₁ LOW and CE₂ HIGH) as well as forcing the Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a Write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The CY7C1069AV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and a 48-ball fine-pitch ball grid array (FBGA) package.


Selection Guide

100		-8	-10	-12	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Commercial	300	275	260	mA
	Industrial	300	275	260	
Maximum CMOS Standby Current	Commercial/Industrial	50	50	50	mA

Pin Configurations

48-ball FBGA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied.....-55°C to +125°C

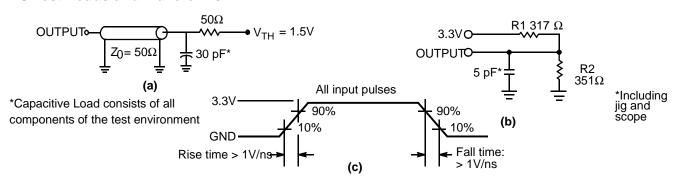
Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[1]}\,....\,-0.5V$ to +4.6V

ıΑ
5V

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	-40°C to +85°C	

	-8		-8		10		12			
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	V	
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage[1]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	$GND \le V_1 \le V_{CC}$			-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}, Output$ Disabled		-1	+1	-1	+1	-1	+1	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max., f = f _{MAX} Commercial			300		275		260	mΑ
	Supply Current	= 1/t _{RC}	Industrial		300		275		260	mΑ
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$CE_2 \le V_{IL}$, $Max. V_{CC}$, $SCE \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$			70		70		70	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{l} CE_2 \leq 0.3V \\ \underline{Max}. \ V_{CC}, \\ CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V, \\ \text{or } V_{IN} \leq 0.3V, \ f = 0 \end{array}$	Commercial/ Industrial		50		50		50	mA

Capacitance^[2]

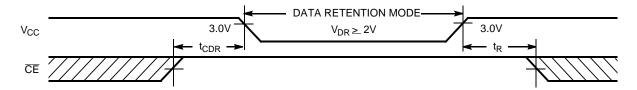

Parameter	Package	Description	Test Conditions	Max.	Unit
C _{IN}	Z54	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	6	pF
	BA48			8	pF
C _{OUT}	Z54	I/O Capacitance		8	pF
	BA48			10	pF

Notes:

- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.

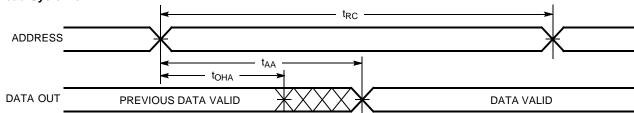
AC Test Loads and Waveforms^[3]

AC Switching Characteristics Over the Operating Range [4]

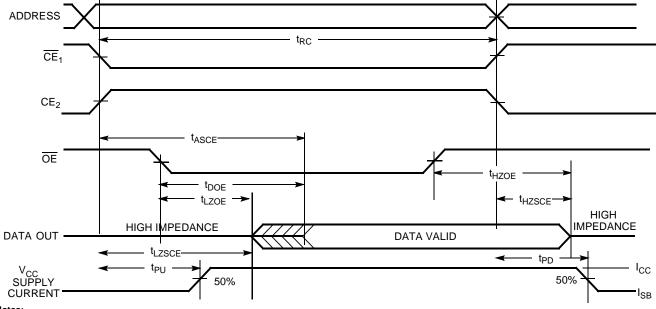

		-8		-10		-12		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle				l		l		ı
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		10		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[6]	1		1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[6]		5		5		6	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low-Z ^[6]	3		3		3		ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High-Z ^[6]		5		5		6	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power-up ^[7]	0		0		0		ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power-down ^[7]		8		10		12	ns
Write Cycle ^[8, 9]			•	•	•	•	•	
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to Write End	6		7		8		ns
t _{AW}	Address Set-up to Write End	6		7		8		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		ns
t _{SD}	Data Set-up to Write End	5		5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[6]		5		5		6	ns

Notes:

- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD} , normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR} , 2.0V) voltage. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and transmission line loads. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise. This part has a voltage regulator which steps down the voltage from 3V to 2V internally. t_{power} time has to be provided initially before a Read/Write operation
- is started.
- t_{HZOE} , t_{HZWE} and t_{LZOE} , t_{LZCE} , and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
- These parameters are guaranteed by design and are not tested. The internal Write time of the memory is defined by the overlap of $\overline{CE_1}$ LOW / $\overline{CE_2}$ HIGH, and \overline{WE} LOW. $\overline{CE_1}$ and \overline{WE} must be LOW along with $\overline{CE_2}$ HIGH to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
- The minimum Write cycle time for Write Cycle No. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .



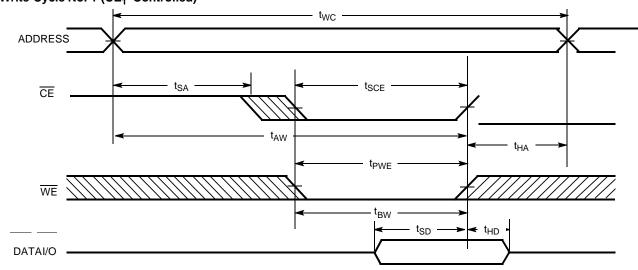
Data Retention Waveform



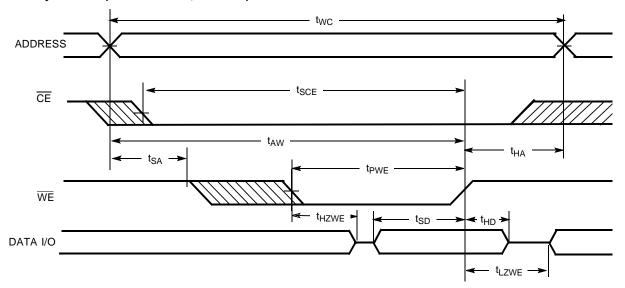
Switching Waveforms

Read Cycle No. 1[10, 11]

Read Cycle No. 2(OE Controlled) [11, 12]



- 10. <u>De</u>vice is continuously selected. <u>CE</u>₁ = V_{IL}, CE₂ = V_{IH}.
 11. WE is HIGH for Read cycle.



Switching Waveforms (continued)

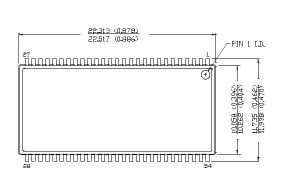
Write Cycle No. 1 (CE₁ Controlled)^[13, 14, 15]

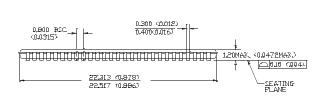
Write Cycle No.2 (WE Controlled, OE LOW)[13, 14, 15]

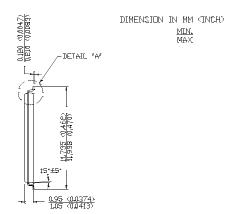
Truth Table

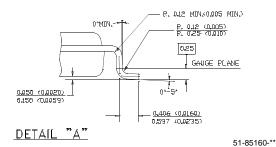
CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	Х	High-Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Power-down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read All Bits	Active (I _{CC})
L	Н	Х	L	Data In	Write All Bits	Active (I _{CC})
L	Н	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

- Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.
 Data I/O is high-impedance if OE = V_{IH}.
 If CE₁ goes HIGH / CE₂ LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
 CE above is defined as a combination of CE₁ and CE₂. It is active low.

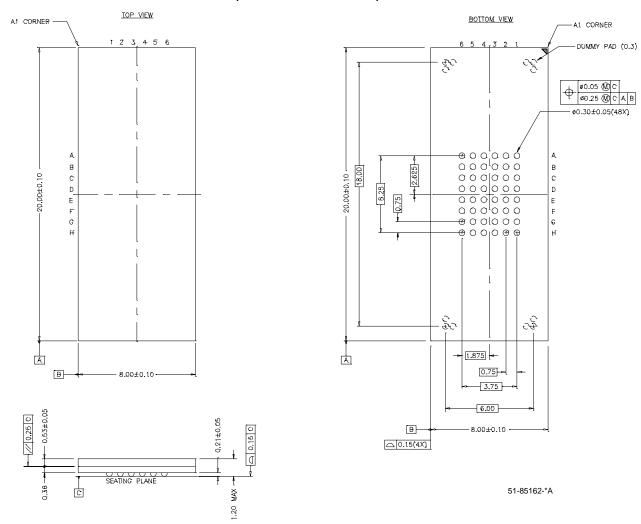



Ordering Information


Speed (ns)	Ordering Code ^[16]	Package Name	Package Type	Operating Range
8	CY7C1069AV33-8ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-8ZI			Industrial
	CY7C1069AV33-8BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-8BAI			Industrial
10	CY7C1069AV33-10ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-10ZI			Industrial
	CY7C1069AV33-10BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-10BAI			Industrial
12	CY7C1069AV33-12ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-12ZI			Industrial
	CY7C1069AV33-12BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-12BAI			Industrial


Package Diagrams

54-lead Thin Small Outline Package, Type II Z54-II


Note:

16. Contact a Cypress Representative for availability of the 48-ball Mini BGA (BA48) package.

Package Diagrams (continued)

48-ball (8 mm x 20 mm x 1.2 mm) FBGA BA48G

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

*D

124441

2/25/03

MEG

Document Title: CY7C1069AV33 2M x 8 Static RAM Document Number: 38-05255 Orig. of Issue REV. ECN NO. Date Change **Description of Change** 113724 03/27/02 NSL New Data Sheet DFP 117060 07/31/02 Removed 15-ns bin *A *B 117990 08/30/02 DFP Added 8-ns bin Added 8-ns bin
Changing I_{CC} for 8, 10, 12 bins
t_{power} changed from 1 µs to 1 ms
Load Cap Comment changed (for Tx line load)
t_{SD} changed to 5.5 ns for the 10-ns bin
Changed some 8-ns bin #'s (t_{HZ}, t_{DOE}, t_{DBE}) Removed hz < Iz comments *C 120385 11/13/02 DFP Final Data Sheet Added note 4 to "AC Test Loads and Waveforms" and note 7 to t_{pu} and t_{pd} Updated Input/Output Caps (for 48BGA only) to 8 pf/10 pf and for the 54-pin TSOP to 6/8 pf

Changed ISB1 from 100 mA to 70 mA

Shaded the 48fBGA product offering information