ADS1205

Two 1－Bit，10MHz，2nd－Order Delta－Sigma Modulators

FEATURES

－16－Bit Resolution
－14－Bit Linearity
－$\pm 2.5 \mathrm{~V}$ Input Range at 2.5 V
－Internal Reference Voltage：2\％
－Gain Error：0．5\％
－Two Independent Delta－Sigma Modulators
－Two Input Reference Buffers
－On－Chip 20MHz Oscillator
－Selectable Internal or External Clock
－Operating Temperature Range： $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
－QFN－24（4x4）Package

APPLICATIONS

－Motor Control
－Current Measurement
－Industrial Process Control
－Instrumentation
－Resolver

DESCRIPTION

The ADS1205 is a two－channel，high－performance， delta－sigma $(\Delta \Sigma)$ modulator with more than 98dB dynamic range，operating from a single +5 V supply．The differential inputs are ideal for direct connection to transducers in an industrial environment．With the appropriate digital filter and modulator rate，the device can be used to achieve 16－bit analog－to－digital（A／D）conversion with no missing codes．Effective resolution of 14 bits can be obtained with a digital filter bandwidth of 40 kHz at a modulator rate of 10 MHz ．The ADS1205 is designed for use in high－resolution measurement applications including current measurements，smart transmitters，industrial process control，and resolvers．It is available in a QFN－24 （4x4）package．

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Package/Ordering Information

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

	ADS1205	UNIT
Supply voltage, AGND to $\mathrm{AV}_{\mathrm{DD}}$	-0.3 to 6	V
Supply voltage, BGND to $\mathrm{BV}_{\mathrm{DD}}$	-0.3 to 6	V
Analog input voltage with respect to AGND	AGND - 0.3 to $\mathrm{AV}_{\text {DD }}+0.3$	V
Reference input voltage with respect to AGND	AGND - 0.3 to $\mathrm{AV}_{\text {DD }}+0.3$	V
Digital input voltage with respect to BGND	BGND -0.3 to $\mathrm{BV}_{\mathrm{DD}}+0.3$	V
Ground voltage difference, AGND to BGND	± 0.3	V
Voltage differences, $\mathrm{BV}_{\text {DD }}$ to AGND	-0.3 to 6	V
Input current to any pin except supply	± 10	mA
Power dissipation	See Dissipation Rating table	
Operating virtual junction temperature range, T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$
Operating free-air temperature range, T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range, TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=5^{\circ} \mathbf{C}(1)$	$\mathbf{T}_{\mathbf{A}}=\mathbf{7 0}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING
QFN-24 (4×4)	2193 mW	$21.929 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1206 mW	877.2 mW

(1) This is the inverse of the traditional junction-to-ambient thermal resistance $\left(\mathrm{R}_{\theta \mathrm{JA}}\right)$. Thermal resistances are not production tested and are for informational purposes only.

RECOMMENDED OPERATING CONDITIONS

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, AGND to $\mathrm{AV}_{\text {DD }}$		4.5	5	5.5	V
Supply voltage, BGND to BVDD	Low-Voltage Levels	2.7		3.6	V
	5V Logic Levels	4.5	5	5.5	V
Reference input voltage		0.5	2.5	2.6	V
Operating common-mode signal	-IN		2.5		V
Analog inputs	+IN - (-IN)			\times REFIN	V
External clock(1)		16	20	24	MHz
Operating junction temperature range, T_{J}		-40		105	${ }^{\circ} \mathrm{C}$

(1) With reduced accuracy, clock can go from 1 MHz up to 33 MHz ; see Typical Characteristics.

INSTRUMENTS
www.ti.com
SBAS312A - JANUARY 2005 - REVISED APRIL 2005

ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV} D \mathrm{D}=3 \mathrm{~V}, \mathrm{CH} \mathrm{x}+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}$, REFIN $=$ REFOUT $=$ internal +2.5 V, CLKIN $=20 \mathrm{MHz}$, and 16 -bit Sinc 3 filter with decimation by 256, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS1205I			UNITS
		MIN	TYP(1)	MAX	
Resolution		16			Bits
DC Accuracy					
INL Integral linearity error(2)			-1.4	± 3	LSB
			-0.002	± 0.005	\% FSR
Integral linearity match				6	LSB
				0.009	\% FSR
DNL Differential nonlinearity ${ }^{(3)}$				± 1	LSB
VOS Input offset error(4)			-1.2	± 3	mV
Input offset error match			0.1	2	mV
TCV OS Input offset error drift			1.1	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
GERR Gain error(4)	Referenced to $\mathrm{V}_{\text {REF }}$		-0.01	± 0.5	\% FSR
Gain error match			0.09	0.5	\% FSR
TCGERR Gain error drift			1.3		ppm/ ${ }^{\circ} \mathrm{C}$
PSRR Power-supply rejection ratio	$4.75 \mathrm{~V}<\mathrm{AV}_{\mathrm{DD}}<5.25 \mathrm{~V}$		78		dB
Analog Input					
FSR Full-scale differential range	$(\mathrm{CH} \mathrm{x+})-(\mathrm{CH} x-) ; \mathrm{CH} x-=2.5 \mathrm{~V}$			± 2.5	V
Specified differential range	$(\mathrm{CH} x+)$ - (CH $\mathrm{x}-) ; \mathrm{CH} \mathrm{x}-=2.5 \mathrm{~V}$			± 2	V
Maximum operating input range(3)		0		$\mathrm{AV}_{\text {DD }}$	V
Input capacitance	Common-mode		3		pF
Input leakage current	CLK turned off			± 1	nA
Differential input resistance			100		k Ω
Differential input capacitance			2.5		pF
CMRR Common-mode rejection ratio	At DC		108		dB
	$\mathrm{V}_{\text {IN }}= \pm 1.25 \mathrm{~V}_{\text {PP }}$ at 40 kHz		117		dB
BW Bandwidth	FS sine wave, -3dB		50		MHz
Sampling Dynamics					
Internal clock frequency	CLKSEL = 1	8	9.8	12	MHz
CLKIN External clock frequency(5)	CLKSEL $=0$	1	20	24	MHz
AC Accuracy					
THD Total harmonic distortion	$\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}_{\text {PP }}$ at 5 kHz		-96.6	-88	dB
SFDR Spurious-free dynamic range	$\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}_{\text {PP }}$ at 5 kHz	92	98		dB
SNR Signal-to-noise ratio	$\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}_{\text {PP }}$ at 5 kHz	86	88.9		dB
SINAD Signal-to-noise + distortion	$\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}_{\text {PP }}$ at 5 kHz	85	88.2		dB
Channel-to-channel isolation(3)	$\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}_{\text {PP }}$ at 50 kHz		100		dB
ENOB Effective number of bits		14	14.5		Bits

(1) All typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
(2) Integral nonlinearity is defined as the maximum deviation of the line through the end points of the specified input range of the transfer curve for $\mathrm{CH} \mathrm{x}+=-2 \mathrm{~V}$ to +2 V at 2.5 V , expressed either as the number of LSBs or as a percent of measured input range $(4 \mathrm{~V})$.
(3) Ensured by design.
(4) Maximum values, including temperature drift, are ensured over the full specified temperature range.
(5) With reduced accuracy, the clock frequency can go from 1 MHz to 33 MHz .
(6) Applicable for 5.0 V nominal supply: $\mathrm{BV} \mathrm{DD}^{(\min)}=4.5 \mathrm{~V}$ and $\mathrm{BV} \mathrm{DD}(\max)=5.5 \mathrm{~V}$.
(7) Applicable for 3.0 V nominal supply: $B V_{D D}(\min)=2.7 \mathrm{~V}$ and $B V_{D D}(\max)=3.6 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating free-air temperature range at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV} \mathrm{DD}^{2}=3 \mathrm{~V}, \mathrm{CH} x+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}$, REFIN $=$ REFOUT $=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and 16 -bit Sinc ${ }^{3}$ filter with decimation by 256 , unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS1205I			UNITS
		MIN	TYP(1)	MAX	
Voltage Reference Output					
$\mathrm{V}_{\text {REFOUT }}$ Reference voltage output	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.450	2.5	2.550	V
$\mathrm{dV}_{\text {REFOUT/dT }}$ Output voltage temperature drift			± 20		ppm $/{ }^{\circ} \mathrm{C}$
Output voltage noise	$\mathrm{f}=0.1 \mathrm{~Hz}$ to $10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$		10		$\mu \mathrm{Vrms}$
	$\mathrm{f}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{L}=10 \mu \mathrm{~F}$		12		$\mu \mathrm{Vrms}$
PSRR Power-supply rejection ratio			60		dB
IOUT Output current			10		$\mu \mathrm{A}$
ISC Short-circuit current			0.5		mA
Turn-on settling time	to 0.1% at $C_{L}=0$		100		$\mu \mathrm{s}$
Voltage Reference Input					
$\mathrm{V}_{\text {IN }} \quad$ Reference voltage input		0.5	2.5	2.6	V
Reference input resistance			100		$\mathrm{M} \Omega$
Reference input capacitance			5		pF
Reference input current				1	$\mu \mathrm{A}$
Digital Inputs(${ }^{(6)}$					
Logic family		CMOS	h Schmitt		
$\mathrm{V}_{\mathrm{IH}} \quad$ High-level input voltage		$0.7 \times \mathrm{BV}_{\text {DD }}$		D+0.3	V
VIL Low-level input voltage		-0.3		BV ${ }_{\text {DD }}$	V
IIN Input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{BV}$ DD or GND			± 50	nA
$\mathrm{C}_{\text {l }} \quad$ Input capacitance			5		pF
Digital Outputs(6)					
Logic family			CMOS		
$\mathrm{V}_{\mathrm{OH}} \quad$ High-level output voltage	$\mathrm{BV}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{IOH}=-100 \mu \mathrm{~A}$	4.44			V
VOL Low-level output voltage	$\mathrm{BV}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{IOL}=+100 \mu \mathrm{~A}$			0.5	V
$\mathrm{C}_{\mathrm{O}} \quad$ Output capacitance			5		pF
C_{L} Load capacitance				30	pF
Data format			it Stream		

(1) All typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
(2) Integral nonlinearity is defined as the maximum deviation of the line through the end points of the specified input range of the transfer curve for $\mathrm{CH} \mathrm{x}+=-2 \mathrm{~V}$ to +2 V at 2.5 V , expressed either as the number of LSBs or as a percent of measured input range (4 V).
(3) Ensured by design.
(4) Maximum values, including temperature drift, are ensured over the full specified temperature range.
(5) With reduced accuracy, the clock frequency can go from 1 MHz to 33 MHz .
${ }^{(6)}$ Applicable for 5.0 V nominal supply: $B V_{D D}(\min)=4.5 \mathrm{~V}$ and $\mathrm{BV}_{\mathrm{DD}}(\max)=5.5 \mathrm{~V}$.
(7) Applicable for 3.0 V nominal supply: $B V_{D D}(\min)=2.7 \mathrm{~V}$ and $B V_{D D}(\max)=3.6 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating free-air temperature range at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{CH} \mathrm{x}+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}$, REFIN $=$ REFOUT $=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and 16 -bit Sinc 3 filter with decimation by 256 , unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS1205I			UNITS
		MIN	TYP(1)	MAX	
Digital Inputs(7)					
Logic family			VCMOS		
$\mathrm{V}_{\mathrm{IH}} \quad$ High-level input voltage	$\mathrm{BV} \mathrm{DD}=3.6 \mathrm{~V}$	2		$\mathrm{BV}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\mathrm{IL}} \quad$ Low-level input voltage	$B V_{\text {DD }}=2.7 \mathrm{~V}$	-0.3		0.8	V
IIN Input current	$\mathrm{V}_{\mathrm{l}}=\mathrm{BV}$ DD or GND			± 50	nA
$\mathrm{C}_{\text {I }} \quad$ Input capacitance			5		pF
Digital Outputs(7)					
Logic family			VCMOS		
$\mathrm{V}_{\mathrm{OH}} \quad$ High-level output voltage	$\mathrm{BV}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{IOH}=-100 \mu \mathrm{~A}$	BV ${ }_{\text {DD }}-0.2$			V
VOL Low-level output voltage	$\mathrm{BV}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{IOL}=+100 \mu \mathrm{~A}$			0.2	V
$\mathrm{C}_{\mathrm{O}} \quad$ Output capacitance			5		pF
$C_{L} \quad$ Load capacitance				30	pF
Data format			Stream		
Power Supply					
AV ${ }_{\text {DD }} \quad$ Analog supply voltage		4.5		5.5	V
Buffer I/O supply voltage	Low-voltage levels	2.7		3.6	V
	5 V logic levels	4.5		5.5	V
Analog operating supply current	CLKSEL = 1		11.8	16	mA
	CLKSEL $=0$		11.4	15.5	mA
Buffer I/O operating supply current	$\mathrm{BV}_{\text {DD }}=3 \mathrm{~V}, \mathrm{CLKOUT}=10 \mathrm{MHz}$			2	mA
	$\mathrm{BV}_{\text {DD }}=5 \mathrm{~V}, \mathrm{CLKOUT}=10 \mathrm{MHz}$			2	mA
Power dissipation	CLKSEL $=0$		57	77.5	mW
	CLKSEL $=1$		59	80	mW

(1) All typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
(2) Integral nonlinearity is defined as the maximum deviation of the line through the end points of the specified input range of the transfer curve for $\mathrm{CH} \mathrm{x}+=-2 \mathrm{~V}$ to +2 V at 2.5 V , expressed either as the number of LSBs or as a percent of measured input range (4 V).
(3) Ensured by design.
(4) Maximum values, including temperature drift, are ensured over the full specified temperature range.
(5) With reduced accuracy, the clock frequency can go from 1 MHz to 33 MHz .
${ }^{(6)}$ Applicable for 5.0 V nominal supply: $\mathrm{BV}_{\mathrm{DD}}(\min)=4.5 \mathrm{~V}$ and $\mathrm{BV}_{\mathrm{DD}}(\max)=5.5 \mathrm{~V}$.
(7) Applicable for 3.0 V nominal supply: $B V_{D D}(\min)=2.7 \mathrm{~V}$ and $B V_{D D}(\max)=3.6 \mathrm{~V}$.

EQUIVALENT INPUT CIRCUIT

Equivalent Analog Input Circuit

Equivalent Digital Input Circuit

PIN ASSIGNMENTS

Terminal Functions

TERMINAL		1/0	DESCRIPTION
NAME	NO.		
REFIN B	1	I	Reference voltage input of channel B: pin for external reference voltage
AGND	2, 5, 13, 17		Analog ground
AV ${ }_{\text {DD }}$	3, 4, 15, 16		Analog power supply; nominal 5V
CLKSEL	6	I	Clock select between internal clock (CLKSEL = 1) or external clock (CLKSEL = 0)
CLKIN	7	I	External clock input
BV ${ }_{\text {DD }}$	8		Digital interface power supply; from 2.7V to 5.5V
BGND	9		Interface ground
CLKOUT	10	0	System clock output
OUT B	11	0	Bit stream from channel B modulator
OUT A	12	0	Bit stream from channel A modulator
REFOUT	14	0	Reference voltage output: output pin of the internal reference source; nominal 2.5 V
REFIN A	18	I	Reference voltage input of channel A: pin for external reference voltage
NC	19, 24		No connection; this pin is left unconnected
CH A+	20	I	Analog input of channel A: noninverting input
CH A-	21	I	Analog input of channel A : inverting input
CH B-	22	I	Analog input of channel B: inverting input
CH B+	23	I	Analog input of channel B: noninverting input

INSTRUMENTS
www.ti.com

PARAMETER MEASUREMENT INFORMATION

Figure 1. ADS1205 Timing Diagram
TIMING REQUIREMENTS(1)
over recommended operating free-air temperature range at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{AV} D \mathrm{DD}=5 \mathrm{~V}$, and BV DD $=2.7$ to 5 V , unless otherwise noted.

PARAMETER		MIN	MAX	UNIT
${ }^{\text {t }}$ 1	CLKIN period: (CLKSEL = 0)	41.6(2)	1000	ns
tw1	CLKIN high time: (CLKSEL = 0)	10	${ }^{\mathrm{t}} \mathrm{C} 1-10$	ns
tC2	CLKOUT period using internal oscillator (CLKSEL = 1)	83	125	ns
	CLKOUT period using external clock (CLKSEL = 0)	$2 \times \mathrm{t} \mathrm{C}_{1}$		ns
tw2	CLKOUT high time	(tc2/2) -5	$\left(\mathrm{t} \mathrm{C}^{2} / 2\right)+5$	ns
tD1	CLKOUT rising edge delay after CLKIN rising edge: (CLKOUT = 0)	0	10	ns
tD2	CLKOUT falling edge delay after CLKIN rising edge: (CLKOUT = 0)	0	10	ns
tD3	Data valid delay after rising edge of CLKOUT (CLKSEL = 1)	(tc2/4) - 8	$\left(\mathrm{t} \mathrm{C}^{\prime} / 4\right)+8$	ns
tD4	Data valid delay after rising edge of CLKOUT (CLKSEL $=0$)	tw1-3	tW1 + 7	ns

[^0]
TYPICAL CHARACTERISTICS

$\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{CH} \mathrm{x}+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} \mathrm{x}-=2.5 \mathrm{~V}, \mathrm{REFIN}=\mathrm{REFOUT}=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and $16-$ bit Sinc 3 filter with decimation by 256 , unless otherwise noted.

Figure 2

Figure 4

Figure 6

Figure 3

Figure 5

Figure 7

INSTRUMENTS
www.ti.com

TYPICAL CHARACTERISTICS (continued)

$\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{CH} \mathrm{x}+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}, \mathrm{REFIN}=$ REFOUT $=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and $16-$ bit Sinc 3 filter with decimation by 256 , unless otherwise noted.

Figure 8

Figure 10

Figure 12

Figure 9

Figure 11

Figure 13

TYPICAL CHARACTERISTICS (continued)

$\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{CH} \mathrm{x}+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}$, REFIN $=$ REFOUT $=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and 16 -bit Sinc 3 filter with decimation by 256 , unless otherwise noted.

Figure 14

Figure 16

SPURIOUS FREE DYNAMIC RANGE AND TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY

Figure 18

Figure 15

Figure 17

SPURIOUS FREE DYNAMIC RANGE AND TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY
(CLKIN $=32 \mathrm{MHz}$)

Figure 19

ADS1205
INSTRUMENTS
www.ti.com

TYPICAL CHARACTERISTICS (continued)

$\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{CH} x+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}, \mathrm{REFIN}=$ REFOUT $=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and $16-$ bit Sinc 3 filter with decimation by 256 , unless otherwise noted.

Figure 20

Figure 22

Figure 24

Figure 21

Figure 23

Figure 25

ADS1205

 www.ti.comSBAS312A - JANUARY 2005 - REVISED APRIL 2005

TYPICAL CHARACTERISTICS (continued)

$\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{CH} \mathrm{x}+=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{CH} x-=2.5 \mathrm{~V}$, REFIN $=$ REFOUT $=$ internal $+2.5 \mathrm{~V}, \mathrm{CLKIN}=20 \mathrm{MHz}$, and 16 -bit Sinc 3 filter with decimation by 256 , unless otherwise noted.

Figure 26

Figure 27
www.ti.com

GENERAL DESCRIPTION

The ADS1205 is a two-channel, 2nd-order, CMOS device with two delta-sigma modulators, designed for medium- to high-resolution A/D signal conversions from DC to 39 kHz (filter response -3dB) if an oversampling ratio (OSR) of 64 is chosen. The output of the converter ($\mathrm{OUT}_{\mathrm{X}}$) provides a stream of digital ones and zeros. The time average of this serial output is proportional to the analog input voltage.

The modulator shifts the quantization noise to high frequencies. A low-pass digital filter should be used at the output of the delta-sigma modulator. The filter serves two functions. First, it filters out high-frequency noise. Second, the filter converts the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation).

An application-specific integrated circuit (ASIC) or field-programmable gate array (FPGA) could be used to implement the digital filter. Figure 28 and Figure 29 show typical application circuits with the ADS1205 connected to an FPGA or ASIC.

The overall performance (that is, speed and accuracy) depends on the selection of an appropriate OSR and filter type. A higher OSR produces greater output accuracy while operating at a lower refresh rate. Alternatively, a lower OSR produces lower output accuracy, but operates at a higher refresh rate. This system allows flexibility with the digital filter design and is capable of A/D conversion results that have a dynamic range exceeding 98dB with an OSR $=256$.

Figure 28. Single-Ended Connection Diagram for the ADS1205 Delta-Sigma Modulator

Figure 29. Differential Connection Diagram for the ADS1205 Delta-Sigma Modulator

THEORY OF OPERATION

The differential analog input of the ADS1205 is implemented with a switched-capacitor circuit. This circuit implements a 2nd-order modulator stage, which digitizes the analog input signal into a 1-bit output stream. The clock source can be internal as well as external. Different frequencies for this clock allow for a variety of solutions and signal bandwidths. Every analog input signal is continuously sampled by the modulator and compared to a reference voltage that is applied to the REFINx pin. A digital stream, which accurately represents the analog input voltage over time, appears at the output of the corresponding converter.

ANALOG INPUT STAGE

Analog Input

The topology of the analog inputs of ADS1205 is based on a fully differential switched-capacitor architecture. This input stage provides the mechanism to achieve low system noise, high common-mode rejection (108dB), and excellent power-supply rejection.

The input impedance of the analog input is dependent on the modulator clock frequency ($\mathrm{f}_{\mathrm{CLK}}$), which is also the sampling frequency of the modulator. Figure 30 shows the basic input structure of one channel of the ADS1205. The relationship between the input impedance of the ADS1205 and the modulator clock frequency is:
$\mathrm{Z}_{\text {IN }}=\frac{100 \mathrm{k} \Omega}{\mathrm{f}_{\mathrm{MOD}} / 10 \mathrm{MHz}}$
The input impedance becomes a consideration in designs where the source impedance of the input signal is high. This high impedance may cause degradation in gain, linearity, and THD. The importance of this effect depends on the desired system performance. There are two
restrictions on the analog input signals, $\mathrm{CH} x+$ and $\mathrm{CH} x-$. If the input voltage exceeds the range (GND -0.3 V) to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$, the input current must be limited to 10 mA because the input protection diodes on the front end of the converter will begin to turn on. In addition, the linearity and the noise performance of the device are ensured only when the differential analog voltage resides within $\pm 2 \mathrm{~V}$ (with $\mathrm{V}_{\text {REF }}$ as a midpoint); however, the FSR input voltage is $\pm 2.5 \mathrm{~V}$.

Modulator

The ADS1205 can be operated in two modes. When CKLSEL = 1, the two modulators operate using the internal clock, which is fixed at 20 MHz . When CKLSEL $=0$, the modulators operate using an external clock. In both modes, the clock is divided by two internally and functions as the modulator clock. The frequency of the external clock can vary from 1 MHz to 33 MHz to adjust for the clock requirements of the application.
The modulator topology is fundamentally a 2nd-order, switched-capacitor, delta-sigma modulator, such as the one conceptualized in Figure 31. The analog input voltage and the output of the 1-bit digital-to-analog converter (DAC) are differentiated, providing analog voltages at X2 and X3. The voltages at X2 and X3 are presented to their individual integrators. The output of these integrators progresses in a negative or positive direction. When the value of the signal at X4 equals the comparator reference voltage, the output of the comparator switches from negative to positive, or positive to negative, depending on its original state. When the output value of the comparator switches from high to low or vice versa, the 1-bit DAC responds on the next clock pulse by changing its analog output voltage at X 6 , causing the integrators to progress in the opposite direction. The feedback of the modulator to the front end of the integrators forces the value of the integrator output to track the average of the input.

Figure 30. Input Impedance of the ADS1205

Figure 31. Block Diagram of the 2nd-Order Modulator

DIGITAL OUTPUT

A differential input signal of 0 V will ideally produce a stream of ones and zeros that are high 50% of the time and low 50% of the time. A differential input of +2 V produces a stream of ones and zeros that are high 80% of the time. A differential input of -2 V produces a stream of ones and zeros that are high 20% of the time. The input voltage versus the output modulator signal is shown in Figure 32.

DIGITAL INTERFACE

INTRODUCTION

The analog signal connected to the input of the delta-sigma modulator is converted using the clock signal applied to the modulator. The result of the conversion, or modulation, is generated and sent to the OUTx pin from the delta-sigma modulator. In most applications where a direct connection is realized between the delta-sigma modulator
and an ASIC or FPGA (each with an implemented filter), the two standard signals per modulator (CLKOUT and OUTx) are provided from the modulator. The output clock signal is equal for both modulators. If CLKSEL $=1$, CLKIN must always be set either high or low.

MODES OF OPERATION

The system clock of the ADS1205 is 20MHz by default. The system clock can be provided either from the internal 20 MHz RC oscillator or from an external clock source. For this purpose, the CLKIN pin is provided; it is controlled by the mode setting, CLKSEL.
The system clock is divided by two for the modulator clock. Therefore, the default clock frequency of the modulator is 10 MHz . With a possible external clock range of 1 MHz to 33 MHz , the modulator operates between 500 kHz and 16.5 MHz .

Figure 32. Analog Input vs Modulator Output of the ADS1205
www.ti.com

FILTER USAGE

The modulator generates only a bitstream, which does not output a digital word like an A/D converter. In order to output a digital word equivalent to the analog input voltage, the bitstream must be processed by a digital filter.

A very simple filter, built with minimal effort and hardware, is the Sinc ${ }^{3}$ filter:
$\mathrm{H}(\mathrm{z})=\left(\frac{1-\mathrm{z}^{- \text {OSR }}}{1-\mathrm{z}^{-1}}\right)^{3}$
This filter provides the best output performance at the lowest hardware size (for example, a count of digital gates). For oversampling ratios in the range of 16 to 256 , this is a good choice. All the characterizations in the data sheet are also done using a Sinc ${ }^{3}$ filter with an oversampling ratio of OSR = 256 and an output word length of 16 bits.
In a Sinc ${ }^{3}$ filter response (shown in Figure 33 and Figure 34), the location of the first notch occurs at the frequency of output data rate $\mathrm{f}_{\text {DATA }}=\mathrm{f}_{\mathrm{CLK}} / \mathrm{OSR}$. The -3 dB point is located at half the Nyquist frequency or $f_{\text {DATA }} / 4$. For some applications, it may be necessary to use another filter type for better frequency response.
This performance can be improved, for example, by a cascaded filter structure. The first decimation stage can be a Sinc ${ }^{3}$ filter with a low OSR and the second stage a high-order filter.

For more information, see application note SBAA094, Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications, available for download at www.ti.com.

Figure 33. Frequency Response of Sinc ${ }^{3}$ Filter

Figure 34. Pulse Response of Sinc ${ }^{3}$ Filter ($\mathrm{f}_{\mathrm{MOD}}=10 \mathrm{MHz}$)

The effective number of bits (ENOB) can be used to compare the performance of ADCs and delta-sigma modulators. Figure 35 shows the ENOB of the ADS1205 with different filter types. In this data sheet, the ENOB is calculated from the SNR:

$$
\begin{equation*}
\mathrm{SNR}=1.76 \mathrm{~dB}+6.02 \mathrm{~dB} \times \mathrm{ENOB} \tag{3}
\end{equation*}
$$

Figure 35. Measured ENOB vs OSR
In motor control applications, a very fast response time for overcurrent detection is required. There is a constraint between $1 \mu \mathrm{~s}$ and $5 \mu \mathrm{~s}$ with 3 bits to 7 bits resolution. The time for full settling is dependent on the filter order. Therefore, the full settling of the Sinc ${ }^{3}$ filter needs three data clocks and the Sinc${ }^{2}$ filter needs two data clocks. The data clock is equal to the modulator clock divided by the OSR. For overcurrent protection,
filter types other than Sinc 3 might be a better choice. A simple example is a Sinc^{2} filter. The Sincfast is a modified Sinc ${ }^{2}$ filter:
$\mathrm{H}(\mathrm{z})=\left(\frac{1-\mathrm{z}^{- \text {OSR }}}{1-\mathrm{z}^{-1}}\right)^{2}\left(1+\mathrm{z}^{-2 \times \text { OSR }}\right)$
Figure 36 compares the settling time of different filter types operating with a 10 MHz modulator clock.

Figure 36. Measured ENOB vs Settling Time

For more information, see application note SBAA094, Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications, available for download at www.ti.com.

INSTRUMENTS

LAYOUT CONSIDERATIONS

POWER SUPPLIES

An applied external digital filter rejects high-frequency noise. PSRR and CMRR improve at higher frequencies because the digital filter suppresses high-frequency noise. However, the suppression of the filter is not infinite, so high-frequency noise still influences the conversion result.

Inputs to the ADS1205, such as CH x+, CH x-, and CLKIN, should not be present before the power supply is on. Violating this condition could cause latch-up. If these signals are present before the supply is on, series resistors should be used to limit the input current to a maximum of 10 mA . Experimentation may be the best way to determine the appropriate connection between the ADS1205 and different power supplies.

GROUNDING

Analog and digital sections of the design must be carefully and cleanly partitioned. Each section should have its own ground plane with no overlap between them. Do not join the ground planes; instead, connect the two with a moderate signal trace underneath the converter. However, for different applications with DSPs and switching power supplies, this process might be different.

For multiple converters, connect the two ground planes as close as possible to one central location for all of the converters. In some cases, experimentation may be required to find the best point to connect the two planes together.

DECOUPLING

Good decoupling practices must be used for the ADS1205 and for all components in the design. All decoupling capacitors, specifically the $0.1 \mu \mathrm{~F}$ ceramic capacitors, must be placed as close as possible to the pin being decoupled. A $1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitor, in parallel with the $0.1 \mu \mathrm{~F}$ ceramic capacitor, can be used to decouple $A V_{D D}$ to AGND as well as BV ${ }_{D D}$ to BGND. At least one $0.1 \mu \mathrm{~F}$ ceramic capacitor must be used to decouple every $A V_{D D}$ to $A G N D$ and $B V_{D D}$ to BGND, as well as for the digital supply on each digital component.

The digital supply sets the I/O voltage for the interface and can be set within a range of 2.7 V to 5.5 V .

In cases where both the analog and digital I/O supplies share the same supply source, an RC filter of 10Ω and $0.1 \mu \mathrm{~F}$ can be used to help reduce the noise in the analog supply.
www.ti.com

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS1205IRGER | ACTIVE | QFN | RGE | 24 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS1205IRGERG4 | ACTIVE | QFN | RGE | 24 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS1205IRGET | ACTIVE | QFN | RGE | 24 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS1205IRGETG4 | ACTIVE | QFN | RGE | 24 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

[^1]
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: ${ }^{(1)}$ All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{tF}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{BV} \mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$. See Figure 1 .
 (2) With reduced accuracy, the minimum clock period can go down to 30ns.

[^1]: NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.
 C. Quad Flatpack, No-Leads (QFN) package configuration.

 0 The package thermal pad must be soldered to the board for thermal and mechanical performance.
 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 E. Falls within JEDEC MO-220.

