急出货

2-channel reversible-motor driver BA6191

The BA6191 is a 2-channel motor driver for CD player changers and electric volume switches, among other applications. Because it uses a negative power supply, this IC uses the power supply of application products efficiently.

Applications

CD player, etc.

Features

- 1) Two-channel reversible-motor driver.
- Four modes forward, reverse, stop (free rotation) and brake are output according to control logic input (two inputs).
- 3) Output voltage is set with the Vref pin.

- 4) Internal power supply voltage drop mute circuit.
- 5) Internal thermal shutdown circuit.
- 6) Negative power supply.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Applied voltage	Vcc	18	V
Logic input pin voltage	VFIN, VRIN	22	V
Power dissipation	Pd	2.2	w
Operating temperature	Topr	−25~+75	°C
Storag <mark>e tempera</mark> ture	Tstg	−55∼+150	$^{\circ}$

●Recommended operating conditions (Ta = 25°C)

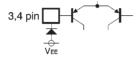
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7~16*	٧
Vref pin input voltage	Vref	1.0~Vcc/2-1.0	٧

^{*} Set the power supply voltage according to power dissipation.

Block diagram

Pin descriptions

Pin No.	Pin name	Function			
1	F _{IN1}	Input of channel 1 forward control signal			
2	R _{IN1}	Input of channel 1 reverse control signal			
3	V _{ref1}	Setting the high level voltage for channel 1 output			
4	Vref2	Setting the high level voltage for channel 2 output			
5	F _{IN2}	Input of channel 2 forward control signal			
6	R _{IN2}	Input of channel 2 reverse control signal			
7	Vcc	(十) power supply			
8	OUT2 (+)	Channel 2 output (positive)			
9	OUT2 (-)	Channel 2 output (negative)			
10	OUT1 (+)	Channel 1 output (positive)			
11	OUT1 (—)	Channel 1 output (negative)			
12	VEE	(—) power supply			


●Input/output circuits

Logic input pins

1,2,5,6 pin 10k Vcc Vcc 24k

VEE

Voltage setting pins

Output pins

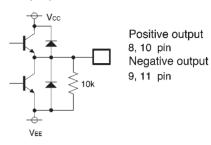


Fig. 1

●Electrical characteristics (unless otherwise noted, Ta=25°C, Vcc=10V, Vref=2.5V)

Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
Supply current 1	lcc ₁	2.1	3.3	4.3	mA	Stop mode
Supply current 2	lcc2	25	38	50	mA	Forward or reverse mode
Supply current 3	lcc3	13	20	27	mA	Brake mode
Input high level voltage	ViH	4.0	_	_	٧	Vcc=reference potential
Input low level voltage	VIL	_	_	1.0	٧	Vcc=reference potential
Input high level current	Ін	_	_	100	μА	
Input low level current	lıL	-1.0	_	+1.0	μА	
Output saturation voltage	Vce	_	1.4	2.1	٧	lo=100 mA, Vref=5 V, sum of the invalid voltages for the upper and lower transistor output
Vref source current	Iref	_	0.02	1.0	μΑ	Forward or reverse mode
Output voltage 1 *1	V _{OUT1}	4.5	5.0	5.5	٧	Forward mode lo=100mA
Output voltage 2 *1	V _{OUT2}	-4.5	-5.0	-5.5	٧	Reverse mode Io=100mA
Output voltage 3 *1	Vouтз	-50	0	50	mV	Brake mode Io=100mA
Output voltage 4 *1	V _{OUT4}	-50	0	50	mV	Stop mode
Load regulation 1 *2	Vouti	_	230	350	mV	Output voltage differential between I=400 mA and I=100 mA
Load regulation 2 *3	V _{OUT2}	-	300	500	mV	Output voltage differential between I=400 mA and I=-100 mA
Mute On voltage	V _{CC1}	_	_	3.5	٧	Muted when Vcc falls
Mute Off voltage	Vcc2	5.5	_		٧	

^{*1} Output voltage = (positive output pin voltage) - (negative output pin voltage)

Circuit operation

(1) Forward/reverse control block

The IC outputs the forward, reverse, stop (free rotation) or brake mode in accordance with the two control logic inputs.

(Forward and reverse modes)

An output voltage twice that of the reference voltage is generated.

(Stop mode)

Each pin changes to the high impedance state.

(Brake mode)

Each pin outputs 0V.

Logic input and output truth table

Fin	Rin	OUT (+)	OUT (-)	Mode
L	Н	Н	L	Forward
Н	L	L	Н	Reverse
Н	Н	L	L	Brake
L	L	OPEN	OPEN	Stop

- Normal voltage is not output when the reference voltage is below 1.0V or about Vcc/2-1.0V.
- Vcc is the reference voltage for the input voltage of logic input pins. In terms of potential relative to VEE, the HIGH level are (Vcc+5.0)V and LOW level are (Vcc)V
- 3) Fig. 2 shows each pin's potential level.

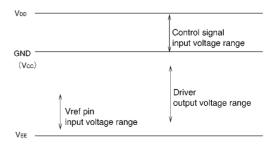


Fig. 2 Pin potential levels

^{*2} Output voltage differential 1 = difference in voltage between 400 mA source and 100 mA source from HIGH level output pin in forward or reverse mode

^{*3} Output voltage differential 2 = difference in voltage between 400 mA sink and 100 mA sink from LOW level output pin in forward or reverse mode

Circuit operation

(2) Thermal shutdown

The BA6191 has an internal shutdown circuit with hysteresis capabilities. Output current is muted when the chip temperature exceeds 175 °C (typically) and restored when the chip temperature falls to 150 °C (typically).

(3) Power supply voltage drop muting

The output current is muted when the power supply voltage (Vcc) drops below 3.0V. During muting, the output voltage is V_{EE} .

Application example

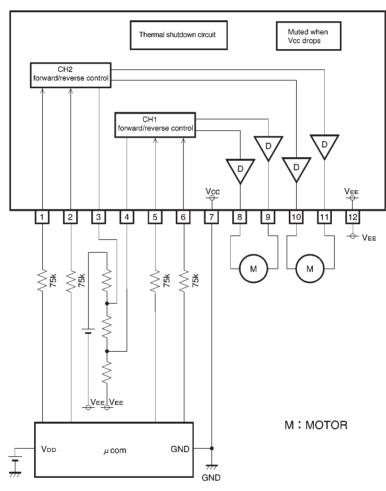


Fig. 3

Operation notes

- (1) Attach a bypass capacitor (roughly $0.1\mu F$) to the power supply, at the base of the IC.
- (2) The radiating fin is internally grounded to the package and so should be connected to an external ground.

Thermal derating curve

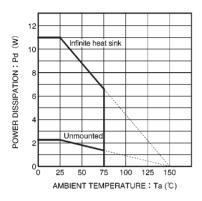


Fig. 4 Thermal derating curve

Electrical characteristic curves

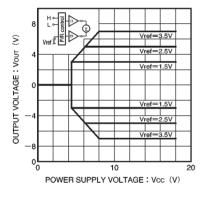
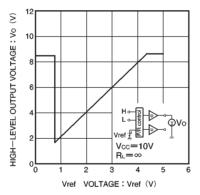
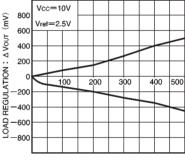
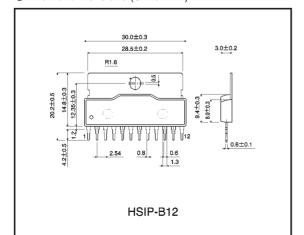


Fig. 5 Power supply voltage vs. output voltage


Fig. 6 Vref voltage vs. high-level output voltage

SOURCE, SINK CURRENT: lo (mA)

Fig. 7 SOURCE / SINK current vs. load regulation

External dimensions (Units: mm)

