SONY # **CXD1178Q** # 8-bit 40MSPS RGB 3-channel D/A Converter #### Description The CXD1178Q is an 8-bit high-speed D/A converter for video band use. It has an input/output equivalent to 3 channels of R, G and B. It is suitable for use of digital TV, graphic display, and others. #### **Features** - Resolution 8-bit - Maximum conversion speed 40MSPS - RGB 3-channel input/output - Differential linearity error ±0.3LSB - Low power consumption 240 mW (200 Ω load at 2 Vp-p output) - Single 5 V power supply - · Low glitch noise - Stand-by function #### Structure Silicon gate CMOS IC #### Absolute Maximum Ratings (Ta=25 °C) - Supply voltage AVDD, DVDD 7 - Input voltage (All pins) VIN VDD+0.5 to Vss-0.5 V Output current (Every each channel) IOUT 0 to 15 mA • Storage temperature Tstg -55 to +150 °C #### **Recommended Operating Conditions** • Supply voltage AVDD, AVss 4.75 to 5.25 V DV_{DD}, DVss 4.75 to 5.25 V Reference input voltage VREF 2.0 V Clock pulse width Tpw1, Tpw0 11.2 ns (min.) to 1.1 µs (max.) Operating temperature Topr -40 to +85 °C #### **Block Diagram** # **Pin Configuration** # Pin Description and I/O Pins Equivalent Circuit | Pin No. | Symbol | I/O | Equivalent circuit | Description | |----------|----------|-----|---|---| | 1 to 8 | R0 to R7 | | o DVpp | Digital input | | 9 to 16 | G0 to G7 | l | 1 to W——————————————————————————————————— | Digital input R0 (LSB) to R7 (MSB) G0 (LSB) to G7 (MSB) B0 (LSB) to B7 (MSB) | | 17 to 24 | B0 to B7 | | DVss | BO (EGB) to BY (MGB) | | 25 | BLK | I | DVDD W DVss | Blanking input. This is synchronized with the clock input signal for each channel. No signal at "H" (Output 0 V). Output condition at "L". | | 32 | VB | 0 | DVDD O DVDD DVSS O | Connect a capacitor of about 0.1 µF. | | Pin No. | Symbol | I/O | Equivalent circuit | Description | | | |----------|------------|-----|---------------------|---|--|--| | 27 | RCK | | 27 DVDD (28) | Clack input | | | | 28 | GCK
BCK | | 28
29
DVss | Clock input. | | | | 30, 31 | DVss | _ | | Digital GND | | | | 33 | AVss | _ | | Analog GND | | | | 26 | CE | I | DVDD W DVss | Chip enable input. This is not synchronized with the clock input signal. No signal (Output 0 V) at "H" and minimizes power consumption. | | | | 35 | IREF | 0 | AVDD O AVDD | Reference current output. Connect a resistance 16 times "16Rout" that of output resistance value "Rout". | | | | 34 | VREF | I | AVDD AVSS AVDD AVDD | Reference voltage input. Set full scale output value. | | | | 42 | VG | 0 | AVss | Connect a capacitor of about 0.1 µF. | | | | 43 to 46 | AVDD | _ | | Analog Vdd | | | | Pin No. | Symbol | I/O | Equivalent circuit | Description | |---------|--------|-----|--------------------|---| | 37 | RO | | | | | 39 | GO | | AVDD O | Current output pins. Voltage output can be obtained by connecting a resistance. | | 41 | во | 0 | 39
41
AVss | | | 36 | RO | | AVDD 0
36
38 | | | 38 | GO | | AVss • | Inverted current output. Normally dropped to analog GND. | | 40 | ВО | | | | | 47, 48 | DVDD | _ | | Digital VDD | # (fclk=40 MHz, AVdd=DVdd=5 V, Rout=200 Ω , Vref=2.0 V, Ta=25 °C) | Item | Symbol | Measurement conditions | | Min. | Тур. | Max. | Unit | |----------------------------------|-------------|---|-----------|------------|------|--------------|------| | Resolution | n | | | | 8 | | bit | | Conversion speed | fclk | AV _{DD} =DV _{DD} =4.75 to 5.25 V
Ta=-40 to 85 °C | | 0.5 | | 40 | MSPS | | Integral non-linearity error | EL | Endpoint | | -2.5 | | 2.5 | LSB | | Differential non-linearity error | Ed | Епаропп | | -0.3 | | 0.3 | LSB | | Output full-scale voltage | VFS | | | 1.8 | 2.0 | 2.2 | V | | Output full-scale ratio *1 | Fsr | | | 0 | 1.5 | 3.0 | % | | Output full-scale current | IFS | | | | 10 | 15 | mA | | Output offset voltage | Vos | When "00000000" da | ıta input | | | 1 | mV | | Glitch energy | GE | Rουτ=75 Ω | | | 30 | | pV∙s | | Crosstalk | CT | When 1 MHz sine wave input | | | 57 | | dB | | Supply current | IDD | 14.3MHz color bar | CE= "L" | | 42 | 48 | mA | | Supply current | Іѕтв | data input | CE= "H" | | 1 | 2 | IIIA | | Analog input resistance | Rin | VREF | | 1 | | | MΩ | | Input capacitance | Сі | | | | | 9 | pF | | Digital input voltage | Viн | AVDD=DVDD=4.75 to 5.25 V | | 2.4 | | | V | | Digital input voltage | VIL | Ta=-20 to 75 °C | | | | 0.8 | V | | Digital input current | Іін | AVDD=DVDD=4.75 to 5.25 V
Ta=-20 to 75 °C | | - 5 | | 5 μ <i>Α</i> | | | Digital input current | lıL | | | | | | μΛ | | Setup time | ts | Rout=75 Ω | | 5 | | | ns | | Hold time | th | Rout=75 Ω | | 10 | | | ns | | Propagation delay time | t PD | | | | 10 | | ns | | CE enable time *2 | tE | CE= H→L | | | 1.8 | 4 | ms | | CE disable time *2 to CE= L→H | | | | 1.8 | 4 | ms | | ^{*1} Full-scale output ratio = $\frac{\text{Full-scale voltage of channel}}{\text{Average of the full-scale voltage of the channels}} -1 \times 100 (%)$ $^{^{*2}}$ When the external capacitor for the VG pin is 0.1 μ F. # Electrical Characteristics Measurement Circuit Analog Input Resistance Digital Input Current Measurement Circuit # **Maximum Conversion Velocity Measurement Circuit** Setup Time Hold Time Glitch Energy Measurement Circuit #### **Crosstalk Measurement Circuit** #### **DC Characteristics Measurement Circuit** # **Propagation Delay Time Measurement Circuit** I/O Chart (when full scale output voltage at 2.00 V) | Input code | Output voltage | | |------------|----------------|-------| | MSB | LSB | | | 111111 | 1 1 | 2.0 V | | : | | | | 100000 | 0 0 | 1.0 V | | : | | | | 000000 | 0 0 | 0 V | Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. SONY CXD1178Q #### **Notes on Operation** #### How to select the output resistance The CXD1178Q is a D/A converter of the current output type. To obtain the output voltage connect the resistance to current output pins (RO, GO and BO). For specifications we have; Output full scale voltage VFs=1.8 to 2.2 [V] Output full scale current | IFS=less than 15 [mA] Calculate the output resistance value from the relation of VFs=IFs \times Rout. Also, 16 times resistance of the output resistance is connected to reference current pin IREF. In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here please note that VFS becomes VFS=VREF × 16ROUT/RIR. VREF is the voltage set at the VREF pin and ROUT is the resistance connected to current output pins (RO, GO and BO) while RIR is connected to IREF. Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application. #### • Phase relation between data and clock To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the setup time (ts) and hold time (th) as stipulated in the Electrical Characteristics. #### Power supply and ground To reduce noise effects separate analog and digital systems in the device periphery. For power supply pins, both digital and analog, bypass respective grounds by using a ceramic capacitor of about 0.1 μ F, as close as possible to the pin. #### Latch up Analog and digital power supply have to be common at the PCB power supply source. This is to prevent latch up due to voltage difference between AVDD and DVDD pins when power supply is turned ON. #### • On inverted current output pins The RO, GO and BO are the inverted current output terminal as described in the Pin Description. The sums shown below become the constant value for any input data. - a) The sum of the currents output from the \overline{RO} and RO pins. - b) The sum of the currents output from the \overline{GO} and \overline{GO} pins. - c) The sum of the currents output from the BO and BO pins. However, the output current from the RO, GO and BO pins is not guaranteed of its performances such as linearity errors, etc. #### On output full-scale voltage When the output full-scale voltage is used without adjustment in the application that uses the RGB signal, the color balance may be broke. #### **Latch Up Prevention** The CXD1178Q is a CMOS IC which required latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AVDD (Pins 43 to 46) and DVDD (Pins 47 and 48), when power supply is ON. # 1. Correct usage # a. When analog and digital supplies are from different sources # b. When analog and digital supplies are from a common source (i) (ii) SONY CXD1178Q - 2. Example when latch up easily occurs - a. When analog and digital supplies are from different sources # b. When analog and digital supplies are from common source (i) (ii) # **Example of Representative Characteristics** # Package Outline Unit: mm # 48PIN QFP (PLASTIC) # PACKAGE STRUCTURE | SONY CODE | QFP-48P-L04 | |------------|---------------| | EIAJ CODE | QFP048-P-1212 | | JEDEC CODE | | | PACKAGE MATERIAL | EPOXY RESIN | |------------------|-------------------------------| | LEAD TREATMENT | SOLDER / PALLADIUM
PLATING | | LEAD MATERIAL | 42/COPPER ALLOY | | PACKAGE MASS | 0.7g |