BURR－BROWN

DAC7541A

Low Cost 12－Bit CMOS Four－Quadrant Multiplying DIGITAL－TO－ANALOG CONVERTER

FEATURES

－FULL FOUR－QUADRANT MULTIPLICATION
－12－BIT END－POINT LINEARITY
－DIFFERENTIAL LINEARITY $\pm 1 / 2 L S B$ MAX OVER TEMPERATURE
－MONOTONICITY GUARANTEED OVER TEMPERATURE
－TTL－／CMOS－COMPATIBLE
－SINGLE＋5V TO＋15V SUPPLY
－LATCH－UP RESISTANT
－7521／7541／7541A REPLACEMENT
－PACKAGES：Plastic DIP，Plastic SOIC
－LOW COST

DESCRIPTION

The Burr－Brown DAC7541A is a low cost 12－bit， four－quadrant multiplying digital－to－analog converter． Laser－trimmed thin－film resistors on a monolithic CMOS circuit provide true 12－bit integral and differ－ ential linearity over the full specified temperature range．

DAC7541A is a direct，improved pin－for－pin replace－ ment for 7521，7541，and 7541A industry standard parts．In addition to a standard 18－pin plastic package， the DAC7541A is also available in a surface－mount plastic 18－pin SOIC．

Logic：A switch is closed to $\mathrm{I}_{\text {OUT } 1}$ for its digital input in a＂HIGH＂state．

[^0]
SPECIFICATIONS

ELECTRICAL

At $+25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}$ or $+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 1}=\mathrm{V}_{\text {PIN } 2}=0 \mathrm{~V}$, unless otherwise specified.

	DAC7541A				TEST CONDITIONS/COMMENTS
PARAMETER	GRADE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}, \mathrm{T}_{\text {MIN }}{ }^{(1)}$	UNITS	
ACCURACY					
Resolution	All	12	12	Bits	
Relative Accuracy	J	± 1	± 1	LSB max	$\pm 1 \mathrm{LSB}= \pm 0.024 \%$ of FSR.
	K	$\pm 1 / 2$	$\pm 1 / 2$	LSB max	$\pm 1 / 2 \mathrm{LSB}= \pm 0.012 \%$ of FSR.
Differential Non-linearity	J	± 1	± 1	LSB max	All grades guaranteed monotonic to 12 bits,
	K	$\pm 1 / 2$	$\pm 1 / 2$	LSB max	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.
Gain Error	J	± 6	± 8	LSB max	Measured using internal R_{FB} and includes effect
	K	± 1	± 3	LSB max	of leakage current and gain T.C. Gain error can be trimmed to zero.
Gain Temperature Coefficient (Δ Gain/ Δ Temperature)	ALL		5	ppm/ ${ }^{\circ} \mathrm{C}$ max	Typical value is $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Output Leakage Current: Out ${ }_{1}$ (Pin 1)	$\begin{aligned} & J, K \\ & J, K \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$n A \max$ nA max	All digital inputs $=0 \mathrm{~V}$. All digital inputs $=\mathrm{V}_{\mathrm{DD}}$.
REFERENCE INPUT Voltage (Pin 17 to GND) Input Resistance (Pin 17 to GND)	All	$\begin{gathered} -10 /+10 \\ 7-18 \end{gathered}$	$\begin{gathered} -10 /+10 \\ 7-18 \end{gathered}$	V min/max $\mathrm{k} \Omega$ min/max	Typical input resistance $=11 \mathrm{k} \Omega$. Typical input resistance temperature coefficient is $-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
DIGITAL INPUTS					Logic inputs are MOS gates. $\mathrm{I}_{\mathrm{IN}} \operatorname{typ}\left(25^{\circ} \mathrm{C}\right)=1 \mathrm{nA}$ $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ (Input HIGH Voltage)	All	2.4	2.4	\checkmark min	
VIL (Input LOW Voltage)	All	0.8	0.8	V max	
$\mathrm{I}_{\text {IN }}$ (Input Current)	All	± 1	± 1	$\mu \mathrm{A}$ max	
$\mathrm{C}_{\text {IN }}\left(\right.$ Input Capacitance) ${ }^{(2)}$	All	8	8	pF max	
POWER SUPPLY REJECTION Δ Gain/ $\Delta V_{D D}$	All	± 0.01	± 0.02	\% per \% max	$\mathrm{V}_{\mathrm{DD}}=+11.4 \mathrm{~V}$ to +16 V
POWER SUPPLY V_{DD} Range $I_{D D}$	All	+5 to +16	+5 to +16	V min to V max	Accuracy is not guaranteed over this range.
	All	2	2	mA max	All digital inputs V_{IL} or $\mathrm{V}_{\text {IN }}$.
	All	100	500	$\mu \mathrm{A}$ max	All digital inputs 0 V or V_{DD}.

NOTES: (1) Temperature ranges are: $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for $\mathrm{JP}, \mathrm{KP}, \mathrm{JU}$ and KU versions. (2) Guaranteed by design but not production tested.

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for design guidance only and are not production tested.
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}$ except where stated, $\mathrm{V}_{\text {PIN } 1}=\mathrm{V}_{\text {PIN } 2}=0 \mathrm{~V}$, output amp is OPA606 except where stated.

PARAMETER	DAC7541A				TEST CONDITIONS/COMMENTS
	GRADE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}, \mathrm{T}_{\text {MIN }}{ }^{(1)}$	UNITS	
PROPAGATION DELAY (from Digital Input change to 90% of final Analog Output)	All	100	-	ns typ	Out $_{1}$ Load $=100 \Omega, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$. Digital Inputs $=0 \mathrm{~V}$ to V_{DD} or V_{DD} to 0 V .
DIGITAL-TO-ANALOG GLITCH IMPULSE	All	1000	-	$n \mathrm{~V}$-s typ	$V_{\text {REF }}=0 \mathrm{~V}$, all digital inputs 0 V to V_{DD} or V_{DD} to OV. Measured using OPA606 as output amplifier.
MULTIPLYING FEEDTHROUGH ERROR ($\mathrm{V}_{\text {REF }}$ to Out_{1})	All	1.0	-	mVp-p max	$V_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ sine wave.
OUTPUT CURRENT SETTLING TIME	All All	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	-	$\mu \mathrm{s}$ typ $\mu \mathrm{s}$ max	To 0.01\% of Full Scale Range. Out ${ }_{1}$ Load $=100 \Omega, C_{E X T}=13 \mathrm{pF}$. Digital Inputs: 0 V to V_{DD} or V_{DD} to 0 V .
OUTPUT CAPACITANCE $\mathrm{C}_{\text {OUT } 1}$ (Pin 1) $\mathrm{C}_{\text {OUT } 2}$ (Pin 2) $\mathrm{C}_{\text {OUT } 1}$ (Pin 1) $\mathrm{C}_{\text {OUT } 2}$ (Pin 2)	All All All All	$\begin{gathered} 100 \\ 60 \\ 70 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 60 \\ 70 \\ 100 \\ \hline \end{gathered}$	pF max pF max pF max pF max	Digital Inputs $=\mathrm{V}_{\mathrm{IH}}$ Digital Inputs $=\mathrm{V}_{\mathrm{IH}}$ Digital Inputs $=\mathrm{V}_{\mathrm{IL}}$ Digital Inputs $=\mathrm{V}_{\mathrm{IL}}$

NOTE: (1) Temperature ranges are: $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for $\mathrm{JP}, \mathrm{KP}, \mathrm{JU}$ and KU versions.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

V_{DD} (Pin 16) to Ground	+17V
$\mathrm{V}_{\text {REF }}$ (Pin 17) to Ground	+25V
$\mathrm{V}_{\text {RPB }}$ (Pin 18) to Ground	$\pm 25 \mathrm{~V}$
Digital Input Voltage (pins 4-15) to Ground	-0.4V, V_{DD}
$\mathrm{V}_{\text {PIN } 1}$, V $\mathrm{V}_{\text {PIN } 2}$ to Ground	-0.4V, V_{DD}
Power Dissipation (any Package):	
To $+75^{\circ} \mathrm{C}$	450 mW
Derates above $+75^{\circ} \mathrm{C}$... $-6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s).	$\ldots+300^{\circ} \mathrm{C}$
Storage Temperature: Plastic Package	$\ldots . .125^{\circ} \mathrm{C}$

NOTE: (1) Stresses above those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTROSTATIC UN DISCHARGE SENSITIVITY

The DAC7541A is an ESD (electrostatic discharge) sensitive device. The digital control inputs have a special FET structure, which turns on when the input exceeds the supply by 18 V , to minimize ESD damage. However, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. When not in use, devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

BURN-IN SCREENING

Burn-in screening is an option available for the models in the Ordering Information table. Burn-in duration is 160 hours at the indicated temperature (or equivalent combination of time and temperature).
All units are tested after burn-in to ensure that grade specifications are met. To order burn-in, add "-BI" to the base model number.

PIN CONNECTIONS

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER
DAC7541JP	Plastic DIP	218
DAC7541KP	Plastic DIP	218
DAC7541JU	Plastic SOIC	219
DAC7541KU	Plastic SOIC	219
DAC7541JP-BI	Plastic DIP	218
DAC7541KP-BI	Plastic DIP	218

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	RELATIVE ACCURACY (LSB)	GAIN ERROR (LSB)
DAC7541AJP	Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	± 1	± 6
DAC7541AKP	Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 / 2$	± 1
DAC7541AJU	Plastic SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	± 1	± 6
DAC7541AKU	Plastic SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 / 2$	± 1
BURN-IN SCREENING OPTION See text for details.				
MODEL	PACKAGE	TEMPERATURE RANGE	RELATIVE ACCURACY (LSB)	BURN-IN TEMP. (160 Hours) ${ }^{(1)}$
DAC7541AJP-BI DAC7541AKP-BI	Plastic DIP Plastic DIP	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \end{gathered}$	$\begin{aligned} & +85^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$

[^1]

PAD	FUNCTION	PAD	FUNCTION
1	$\mathrm{I}_{\text {OUT1 }}$	10	Bit 7
2	l OUT2	11	Bit 8
3	GND	12	Bit 9
4	Bit 1 (MSB)	13	Bit 10
5	Bit 2	14	Bit 11
6	Bit 3	15	Bit 12 (LSB)
7	Bit 4	16	$+V_{\text {DD }}$
8	Bit 5	17	$V_{\text {REF }}$
9	Bit 6	18	R $_{\text {FEEDBACK }}$

Substrate Bias: Isolated.
NC: No Connection.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	$104 \times 105 \pm 5$	$2.64 \times 2.67 \pm 0.13$
Die Thickness	20 ± 3	0.51 ± 0.08
Min. Pad Size	4×4	0.10×0.10
Metalization		Aluminum

DIE TOPOLOGY DAC7541A

TYPICAL PERFORMANCE CURVES

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$, unless otherwise noted.

DISCUSSION OF SPECIFICATIONS

RELATIVE ACCURACY

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line between zero and full scale.

DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the deviation from an ideal 1LSB change in the output, from one adjacent output state to the next. A differential nonlinearity specification of ± 1.0 LSB guarantees monotonicity.

GAIN ERROR

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC7541A is $-(4095 / 4096) X\left(V_{\text {REF }}\right)$. Gain error may be adjusted to zero using external trims.

OUTPUT LEAKAGE CURRENT

The measure of current which appears at Out ${ }_{1}$ with the DAC loaded with all zeros, or at Out_{2} with the DAC loaded with all ones.

MULTIPLYING FEEDTHROUGH ERROR

This is the AC error output due to capacitive feedthrough from $\mathrm{V}_{\text {REF }}$ to Out_{1} with the DAC loaded with all zeros. This test is performed at 10 kHz .

OUTPUT CURRENT SETTLING TIME

This is the time required for the output to settle to a tolerance of $\pm 0.5 \mathrm{LSB}$ of final value from a change in code of all zeros to all ones, or all ones to all zeros.

PROPAGATION DELAY

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches 90% of final value.

DIGITAL-TO-ANALOG GLITCH IMPULSE

This is the measure of the area of the glitch energy measured in nV -seconds. Key contributions to glitch energy are digital word-bit timing differences, internal circuitry timing differences, and charge injected from digital logic.

MONOTONICITY

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC7541A is guaranteed monotonic to 12 bits.

POWER SUPPLY REJECTION

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

CIRCUIT DESCRIPTION

The DAC7541A is a 12 -bit multiplying D/A converter consisting of a highly stable thin-film R-2R ladder network and 12 pairs of current steering switches on a monolithic chip. Most applications require the addition of a voltage or current reference and an output operational amplifier.
A simplified circuit of the DAC7541A is shown in Figure 1. The R-2R inverted ladder binarily divides the input currents that are switched between $\mathrm{I}_{\text {OUT } 1}$ and $\mathrm{I}_{\mathrm{OUT} 2}$ bus lines. This switching allows a constant current to be maintained in each ladder leg independent of the input code.
The input resistance at $\mathrm{V}_{\text {REF }}$ (Figure 1) is always equal to $R_{\text {LDR }}\left(R_{L D R}\right.$ is the $R / 2 R$ ladder characteristic resistance and is equal to value " R "). Since $R_{\text {IN }}$ at the $V_{\text {REF }}$ pin is constant, the reference terminal can be driven by a reference voltage or a reference current, AC or DC , of positive or negative polarity.

FIGURE 1. Simplified DAC Circuit.

EQUIVALENT CIRCUIT ANALYSIS

Figures 2 and 3 show the equivalent circuits for all digital inputs low and high, respectively. The reference current is switched to $\mathrm{I}_{\text {OUT } 2}$ when all inputs are low and $\mathrm{I}_{\mathrm{OUT} 1}$ when inputs are high. The I_{L} current source is the combination of surface and junction leakages to the substrate; the 1/4096 current source represents the constant one-bit current drain through the ladder terminal.

DYNAMIC PERFORMANCE

Output Impedance

The output resistance, as in the case of the output capacitance, is also modulated by the digital input code. The resistance looking back into the $\mathrm{I}_{\text {OUT } 1}$ terminal may be anywhere between $10 \mathrm{k} \Omega$ (the feedback resistor alone when all digital inputs are low) and $7.5 \mathrm{k} \Omega$ (the feedback resistor in parallel with approximately $30 \mathrm{k} \Omega$ of the $\mathrm{R}-2 \mathrm{R}$ ladder network resistance when any single bit logic is high). The static accuracy and dynamic performance will be affected by this modulation. The gain and phase stability of the output

FIGURE 2. DAC7541A Equivalent Circuit (All inputs LOW).
amplifier, board layout, and power supply decoupling will all affect the dynamic performance of the DAC7541A. The use of a compensation capacitor may be required when highspeed operational amplifiers are used. It may be connected across the amplifier's feedback resistor to provide the necessary phase compensation to critically dampen the output. See Figures 4 and 6.

APPLICATIONS

OP AMP CONSIDERATIONS

The input bias current of the op amp flows through the feedback resistor, creating an error voltage at the output of the op amp. This will show up as an offset through all codes of the transfer characteristics. A low bias current op amp such as the OPA606 is recommended.
Low offset voltage and $\mathrm{V}_{\text {OS }}$ drift are also important. The output impedance of the DAC is modulated with the digital code. This impedance change (approximately $10 \mathrm{k} \Omega$ to $30 \mathrm{k} \Omega$) is a change in closed-loop gain to the op amp. The result is that $V_{\text {Os }}$ will be multiplied by a factor of one to two depending on the code. This shows up as a linearity error. Offset can be adjusted out using Figure 4. Gain may be adjusted using Figure 5.

UNIPOLAR BINARY OPERATION

(Two-Quadrant Multiplication)

Figure 4 shows the analog circuit connections required for unipolar binary (two-quadrant multiplication) operation. With a DC reference voltage or current (positive or negative polarity) applied at pin 17, the circuit is a unipolar D/A converter. With an AC reference voltage or current, the circuit provides two-quadrant multiplication (digitally controlled attenuation). The input/output relationship is shown in Table I.

FIGURE 3. DAC7541A Equivalent Circuit (All inputs HIGH).

BINARY INPUT	ANALOG OUTPUT
MSB LSB	
111111111111	$-\mathrm{V}_{\text {REF }}(4095 / 4096)$
100000000000	$-\mathrm{V}_{\text {REF }}(2048 / 4096)$
000000000001	$-\mathrm{V}_{\text {REF }}(1 / 4096)$
000000000000	OV

TABLE I. Unipolar Codes.
C_{1} phase compensation (10 to 25 pF) in Figure 4 may be required for stability when using high speed amplifiers. C_{1} is used to cancel the pole formed by the DAC internal feedback resistance and output capacitance at Out ${ }_{1}$.
R_{1} in Figure 5 provides full scale trim capability-load the DAC register to 111111111111 , adjust R_{1} for $\mathrm{V}_{\text {OUT }}=-$ $\mathrm{V}_{\text {REF }}$ (4095/4096). Alternatively, full scale can be adjusted by omitting R_{1} and R_{2} and trimming the reference voltage magnitude.

BIPOLAR FOUR-QUADRANT OPERATION

Figure 6 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the A_{1} to A_{2} summing resistor, with the input code set to 100000000000 . Gain may be adjusted by varying the feedback resistor of A_{2}. The input/output relationship is shown in Table II.

BINARY INPUT	ANALOG OUTPUT
MSB LSB	
111111111111	$+V_{\text {REF }}(2047 / 2048)$
100000000000	0 V
011111111111	$-\mathrm{V}_{\text {REF }}(1 / 2048)$
000000000000	$-\mathrm{V}_{\text {REF }}(2048 / 2048)$

TABLE II. Bipolar Codes.

FIGURE 4. Basic Connection With Op Amp $\mathrm{V}_{\text {OS }}$ Adjust: Unipolar (two-quadrant) Multiplying Configuration.

FIGURE 5. Basic Connection With Gain Adjust (allows adjustment up or down).

FIGURE 6. Bipolar Four-Quadrant Multiplier.

DIGITALLY CONTROLLED GAIN BLOCK

The DAC7541A may be used in a digitally controlled gain block as shown in Figure 7. This circuit gives a range of gain from one (all bits $=$ one) to 4096 (LSB = one). The transfer function is:

$$
\mathrm{V}_{\text {OUT }}=\frac{-\mathrm{V}_{\text {IN }}}{\left(\frac{\mathrm{B}_{1}}{2}+\frac{\mathrm{B}_{2}}{4}+\frac{\mathrm{B}_{3}}{8}+\cdots+\frac{\mathrm{B}_{12}}{4096}\right)}
$$

All bits off is an illegal state, as division by zero is impossible (no op amp feedback). Also, errors increase as gain increases, and errors are minimized at major carries (only one bit on at a time).

FIGURE 7. Digitally Programmable Gain Block.

[^0]: Switches shown for digital inputs＂HIGH＂．

[^1]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

