19-1414; Rev 0; 1/99

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers

General Description

The MAX4508/MAX4509 are 8-to-1 and dual 4-to-1 fault-protected multiplexers that are pin-compatible with the industry-standard DG508/DG509. The MAX4508/MAX4509 operate with dual supplies of ±4.5V to ±20V or a single supply of +9V to +36V. These multiplexers feature fault-protected inputs, Rail-to-Rail® signal handling capability, and overvoltage clamping at 150mV beyond the rails.

Both parts offer $\pm 40V$ overvoltage protection with supplies off and $\pm 25V$ protection with supplies on. Onresistance is 400Ω max and is matched between channels to $15\Omega\text{max}.$ All digital inputs have TTL logic thresholds, ensuring both TTL and CMOS logic compatibility when using a single +12V supply or dual $\pm 15V$ supplies.

Applications

Data-Acquisition Systems

Industrial and Process Control

Avionics

Signal Routing

Redundant/Backup Systems

Functional Diagrams/Truth Tables appear at end of data sheet.

Features

- ±40V Fault Protection with Power Off
 ±25V Fault Protection with ±15V Supplies
- ♦ Rail-to-Rail Signal Handling
- ♦ No Power-Supply Sequencing Required
- **♦ All Channels Off with Power Off**
- Output Clamped to Appropriate Supply Voltage During Fault Condition
- 1kΩ Output Clamp Resistance During Overvoltage
- ♦ 400Ωmax On-Resistance
- **♦ 20ns Fault-Response Time**
- ±4.5V to ±20V Dual Supplies
 +9V to +36V Single Supply
- **♦ TTL/CMOS-Compatible Logic Inputs**

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4508CAE	0°C to +70°C	16 SSOP
MAX4508CSE	0°C to +70°C	16 Narrow SO
MAX4508CPE	0°C to +70°C	16 Plastic DIP
MAX4508C/D	0°C to +70°C	Dice*
MAX4508EAE	-40°C to +85°C	16 SSOP
MAX4508ESE	-40°C to +85°C	16 Narrow SO
MAX4508EPE	-40°C to +85°C	16 Plastic DIP
MAX4508MJE	-55°C to +125°C	16 CERDIP**

Ordering Information continued at end of data sheet.

Pin Configurations/Functional Diagrams

Pail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

W XX V

__ Maxim Integrated Products 1

^{*}Contact factory for dice specifications

^{**} Contact factory for availability.

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	Continu
V+0.3V to +44.0V	16 SS
V44.0V to +0.3V	16 Na
V+ to V0.3V to +44.0V	16-Pi
COM_, A_ (Note 1) (V+ + 0.3V) to (V 0.3V)	16-Pi
NO(V+ - 40V) to (V- + 40V)	Operati
NO_ to COM36V to +36V	MAX
NO_ Overvoltage with Switch Power On30V to +30V	MAX
NO_ Overvoltage with Switch Power Off40V to +40V	MAX
Continuous Current into Any Terminal±30mA	Storage
Peak Current, Into Any Terminal	Lead T
(pulsed at 1ms, 10% duty cycle)±100mA	

Continuous Power Dissipation (TA = +	70°C)
16 SSOP (derate 8.70mW/°C above	+70°C)667mW
16 Narrow SO (derate 8.70mW/°C al	oove +70°C)471mW
16-Pin Plastic DIP (derate 10.53mW/	"C above +70°C) 842mW
16-Pin CERDIP (derate 10.00mW/°C	above +70°C)800mW
Operating Temperature Ranges	
MAX4508C_ E/MAX4509C_E	0°C to +70°C
MAX4508E_ E/MAX4509E_E	40°C to +85°C
MAX4508MJE/MAX4509MJE	55°C to +125°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+300°C

Note 1: COM_, EN, and A_ pins are not fault protected. Signals on COM_, EN, or A_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+=+15V, V-=-15V, VA_H=+2.4V, VA_L=+0.8V, VEN=+2.4V, TA=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIO	ONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	1							
Fault-Free Analog Signal Range (Notes 3, 4)	V _{NO} _	V+ = +15V, V- = -15 V _{NO} _= ±15V	iV,	C, E, M	V-		V+	V
				+25°C		300	400	
On-Resistance	Ron	V _{COM} _ = ±10V, I _{NO} _	$_{-} = 0.2 \text{mA}$	C, E			500	Ω
				М			700	
0.5.11				+25°C			15	
On-Resistance Match Between Channels (Note 5)	ΔR _{ON}	V _{COM} _ = ±10V, I _{NO} _	$_{-} = 0.2 \text{mA}$	C, E			20	Ω
Chamileis (Note 3)				М			25	
NO 0"1 1 0 1		V _{NO} _ = ±10V, V _{COM} _ = ∓10V		+25°C	-0.5		0.5	
NO_ Off-Leakage Current (Note 6)	INO_(OFF)			C, E	-5		5	nA
(Note o)				М	-50		50	
		V _{COM_} = ±10V,		+25°C	-2		2	nA
			MAX4508	C, E	-20		20	
COM_ Off-Leakage Current				М	-200		200	
(Note 6)	ICOM_(OFF)	V _{NO} _ = ∓10V,		+25°C	-1		1	
			MAX4509	C, E	-10		10	
				М	-100		100	
				+25°C	-2		2	
			MAX4508	C, E	-25		25	
COM_ On-Leakage Current (Note 6)	loove (ove	$V_{COM} = \pm 10V$		М	-300		300	nA
	ICOM_(ON)	$V_{NO} = \pm 10V$ or floating		+25°C	-1		1	I IIA
			MAX4509	C, E	-15		15	
				М	-150		150	

ELECTRICAL CHARACTERISTICS--Dual Supplies (continued)

 $(V + = +15V, V - = -15V, VA_H = +2.4V, VA_L = +0.8V, VEN = +2.4V, TA = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	TA	MIN	TYP	MAX	UNITS
FAULT PROTECTION								
Fault-Protected Analog Signal		Applies with power on, Figure 9		+25°C	-25		25	l
Range (Notes 3, 4)	V _{NO} _		Applies with power off		-40		40	V
				+25°C	-10		10	
COM_ Output Leakage Current,	ICOM_	$V_{NO} = \pm 25V, V_{E}$	N = 0	C, E	-20		20	nA
Supplies On				М	-100		100	μΑ
				+25°C	-20		20	
NO_ Input Leakage Current, Supplies On	I _{NO} _	$V_{NO} = \pm 25V, V_{O}$ $V_{EN} = 0$	COM_ = ∓10V,	C, E	-200		200	nA
Supplies Off		VEN = O		М	-50		50	μΑ
			_	+25°C	-20		20	nA
NO_Input Leakage Current, Supplies Off	I _{NO} _	$V_{NO} = \pm 40V, V_{O}$ $V_{+} = 0, V_{-} = 0$	COM = 0,	C, E	-5		5	
Supplies Off		V+ = 0, V- = 0		М	-100		100	μA
COM_ On Clamp Output	laa	V 0	V _{NO} _ = 25V	+25°C	7	10	13	m A
Current, Supplies On	ICOM_	$V_{COM} = 0$	V _{NO} _ = -25V	+23 C	-13	-11	-7	mA
COM_ On Clamp Output Resistance, Supplies On	R _{COM} _	V _{NO} _ = ±25V		+25°C	100	1.0	2.5	kΩ
± Fault Output Clamp Turn-On Delay (Note 4)		$R_L = 10k\Omega$, $V_{NO} = \pm 25V$		+25°C		20		ns
± Fault Recovery Time (Note 4)		$R_L = 10k\Omega$, V_{NO}	= ±25V	+25°C		2.5		μs
LOGIC INPUT								· ·
A_ Input Logic Threshold High	V _{A_H}			C, E, M	2.4			V
A_ Input Logic Threshold Low	V _A _L			C, E, M			0.8	V
A_ Input Current Logic High or Low	I _{A_H} , I _{A_L}	V _A _= 0.8V or 2.4	ŀV	C, E, M	-1		1	μΑ
SWITCH DYNAMIC CHARACTE	ERISTICS							
				+25°C		160	275	
Enable Turn-On Time	ton	$V_{NO_{-}} = \pm 10V, R$	$L = 1k\Omega$,	C, E			400	ns
		Figures 2 and 3		М			600	-
T W T		F1 0		+25°C		170	350	
Transition Time	trans	Figure 2		C, E, M			500	ns
				+25°C		120	200	
Enable Turn-Off Time	tOFF	$V_{NO} = \pm 10V$, R Figures 2 and 3	$L = 1k\Omega$,	C, E			250	ns
		rigures 2 and 5		М			400	
Break-Before-Make Time Delay (Note 4)	t _{BBM}	$V_{NO_} = \pm 10V$, $R_L = 1k\Omega$, Figure 4		C, E, M	10	80		ns
Charge Injection (Note 4)	Q	$C_L = 1.0 nF$, $V_{NO} = 0$, $R_S = 0$, Figure 5		+25°C		2	10	рС
Off-Isolation (Note 7)	V _{ISO}	$R_L = 75\Omega$, $C_L = V_{NO} = 1V_{RMS}$, f	15pF, f = 1MHz, Figure 6	+25°C		-70		dB

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+15V, V-=-15V, VA_H=+2.4V, VA_L=+0.8V, VEN=+2.4V, TA=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at TA=+25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
Channel-to-Channel Crosstalk (Note 8)	V _{CT}	$R_L = 75\Omega$, $C_L = 15pF$ $V_{NO} = 1V_{RMS}$, $f = 1N$		+25° C		-62		dB
NO_ Off-Capacitance	C _{N_(OFF)}	f = 1MHz, Figure 8		+25° C		10		pF
COM_ Off-Capacitance	Cook (OFF)	f = 1MHz, Figure 8	MAX4508	+25° C		19		pF
COM_On-Capacitance	CCOM_(OFF)	1 = 11vii iz, i igule o	MAX4509	125 0		14] Pi
COM_ On-Capacitance	Cook 4 (ON)	f = 1MHz, Figure 8	MAX4508			28		pF
COM_OH-Capacitatice	CCOM_(ON)	T = TIVILIZ, Figure 6	MAX4509	+25° C		22] Pr
POWER SUPPLY								
Power-Supply Range	V+, V-			C, E, M	±4.5		±20	V
		All) / O == 5) /		+25°C		370	500	
V+ Supply Current	I+	All $V_{A_{-}} = 0$ or $5V$, $V_{NO_{-}} = 0$, $V_{FN_{-}} = 5V$		C, E			600	μΑ
		VNO_ 0, VLN 0		М			800	
		AH.)/ 0 E)/		+25°C		200	300	
V- Supply Current	-	All $V_{A} = 0$ or $5V$, $V_{NO} = 0$, $V_{FN} = 5V$		C, E			400	μΑ
		*140_ O, * EIN = O *		М			500	
GND Supply Current	ICNID	All $V_{A} = 0$ or $5V$,		+25°C		200	300	μΑ
GND Supply Culterit	IGND	$V_{NO} = 0$, $V_{EN} = 5V$		C, E, M			500]

ELECTRICAL CHARACTERISTICS—Single +12V Supply

 $(V+=+12V, V-=0, V_{A_H}=+2.4V, V_{A_L}=+0.8V, V_{EN}=+2.4V, T_{A}=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_{A}=+25^{\circ}C$.) (Note 2)

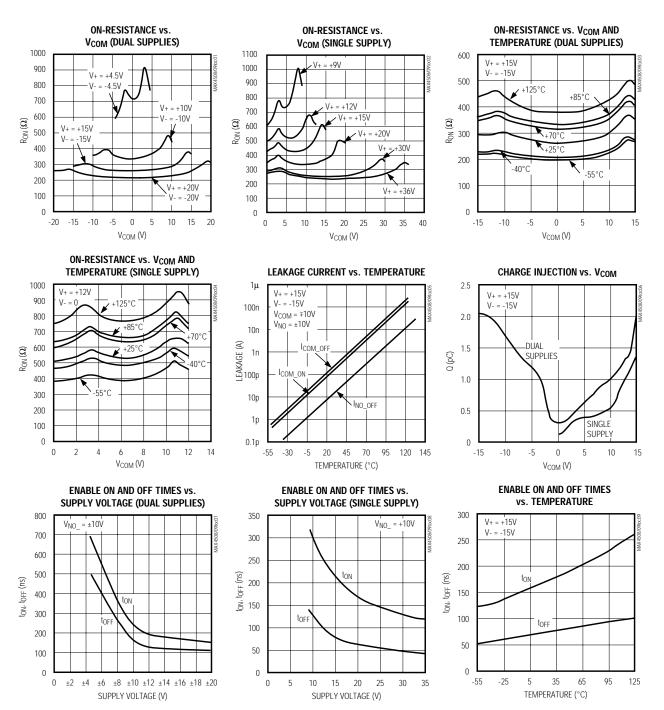
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	•						
Fault-Free Analog Signal Range (Note 3)	V _{NO} _	V+ = 12V, V- = 0, V _{NO} _ = 12V	C, E, M	0		V+	V
			+25°C		650	950	
On-Resistance	Ron	$V_{COM} = +10V, I_{NO} = 200\mu A$	C, E			1100	Ω
			М			1300	
			+25°C		10	25	
On-Resistance Match Between Channels (Note 5)	ΔRon	V _{COM} _ = 10V, I _{NO} _ = 200μA	C, E			50	Ω
Gharmeis (Note 3)			М			75	
NO Off Lashana Command		101/11/	+25°C	-0.5	0.01	0.5	
NO_ Off-Leakage Current (Notes 6, 9)	INO_(OFF)	V _{COM} _ = 10V, 1V; V _{NO} _ = 1V, 10V	C, E	-10		10	nA
(10103 0, 7)		VNO_ 177.101	М	-200		200	

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

 $(V+=+12V, V-=0, VA_H=+2.4V, VA_L=+0.8V, VEN=+2.4V, TA=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 2)

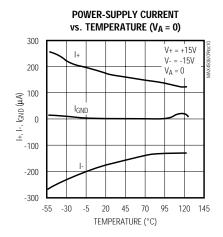
PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
				+25°C	-2		2	
			MAX4508	C, E	-20		20	
COM_ Off-Leakage Current	loon (orr)	V _{COM} = 10V, 1V;		М	-200		200	nA
(Note 6)	ICOM_(OFF)	V _{NO} _ = 1V, 10V		+25°C	-1		1	I IIA
			MAX4509	C, E	-10		10	
				М	-100		100	
				+25°C	-2		2	
			MAX4508	C, E	-25		25	
COM_ On-Leakage Current		V _{COM} = 10V, 1V;		М	-300		300	n ^
(Note 6)	ICOM_(ON)	V _{NO} = 10V, 1V, or floating		+25°C	-1		1	nA
			MAX4509	C, E	-15		15	
				М	-150		150	
FAULT PROTECTION			-	•				
Fault-Protected Analog Signal	M	Applies with all power	er on	25.0	-25		25	V
Range (Notes 3, 10)	V _{NO} _	Applies with all power off		+25°C	-40		40	V
					-20		20	nA
COM_ Output Leakage Current, Supply On (Notes 3, 10)	ICOM_	V _{NO} _ = ±25V, V+ = 12V		C, E	-20		20	
Supply Off (Notes 5, 10)				М	-100		100	μΑ
	I _{NO_}	251/1/		+25°C	-20		20	nA
NO_Input Leakage Current, Supply On (Notes 3, 10)		$V_{NO_{-}} = \pm 25V, V_{COM_{-}}$ $V_{+} = 12V$	_ = 0,	C, E	-5		5	
Supply Off (Notes 3, 10)		V+ = 12V		М	-100		100	μΑ
				+25°C	-20	0.1	20	nA
NO_Input Leakage Current, Supply Off (Notes 3, 10)	I _{NO} _	$V_{NO} = \pm 40V, V + = 0$, V- = 0	C, E	-5		5	^
Supply Oil (Notes 3, 10)				М	-100		100	μΑ
COM_ON Output Current, Supply On	ICOM_	V _{NO} _ = 25V, V+ = 12	V	+25°C	2	3	5	mA
COM_ ON Output Resistance, Supply On	R _{COM} _	V _{NO} _ = 25V, V+ = 12V		+25°C		2.4	6	kΩ
LOGIC INPUT		1		1	1			
A_ Input Logic Threshold High	V _{IN_H}			C, E, M		1.8	2.4	V
A_ Input Logic Threshold Low	V _{IN_L}				0.8	1.8		V
A_ Input Current Logic High or Low	I _{INH_} ,	V _{IN} _= 0.8V or 2.4V		C, E, M	-1	0.03	1	μΑ

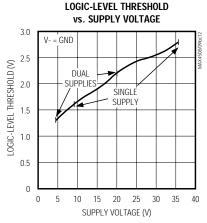
ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

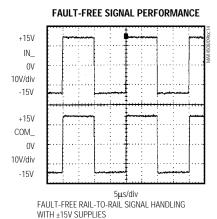

 $(V+=+12V, V-=0, VA_H=+2.4V, VA_L=+0.8V, VEN=+2.4V, TA=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at TA=+25°C.) (Note 2)

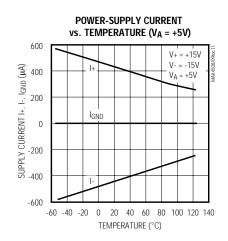
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Enable Turn-On Time	tou	$V_{COM} = 10V$, $R_L = 2k\Omega$,	+25°C		220	500	ns
Enable fulli-Off fillie	ton	Figure 3	C, E, M			700	115
Enable Turn-Off Time	toff	$V_{COM} = 10V$, $R_L = 2k\Omega$,	+25°C		100	250	ns
Lilable fulli-Oil fillie	UFF	Figure 3	C, E, M			350	113
Break-Before-Make Time Delay (Note 4)	t _{BBM}	$V_{COM} = 10V$, $R_L = 2k\Omega$, Figure 4	+25°C	50	100		ns
Charge Injection (Note 4)	Q	$C_L = 1.0nF, V_{NO} = 0, R_S = 0,$ Figure 5	+25°C		2	10	рС
NO_ Off-Capacitance	C _{NO_(OFF)}	V _{NO} _ = 0, f = 1MHz, Figure 8	+25°C		10		pF
COM_ Off-Capacitance	CCOM_(OFF)	V _{COM} __ = 0, f = 1MHz, Figure 8	+25°C		19		pF
COM_ On-Capacitance	CCOM_(ON)	V _{COM} _ = V _{NO} _ = 0, f = 1MHz, Figure 8	+25°C		28		рF
Off-Isolation (Note 7)	V _{ISO}	$R_L = 75\Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 1MHz$, Figure 6	+25°C		-70		dB
Channel-to-Channel Crosstalk (Note 8)	V _{CT}	$R_L = 75\Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 1MHz$, Figure 7	+25°C		-62		dB
POWER SUPPLY	•						
Power-Supply Range	V+		C, E, M	9		36	V
V+ Supply Current	-	All $V_{A} = 0$ or $5V$,	+25°C		200	300	
v+ Supply Current	1+	$V_{NO_{-}} = 0$, $V_{EN} = 5V$	C, E, M			450	μΑ
<u> </u>		All $V_{A_{-}} = 0$ or $5V$,	+25°C		150	250	
V- and GND Supply Current	I _{GND}	$V_{NO} = 0$, $V_{EN} = +5V$	C, E, M			375	μΑ
v- and OND Supply Current	IGND	All V _A = 0 or 5V	+25°C		250	400] µA
		All vA_ = 0.01.3v	C, E, M			600	

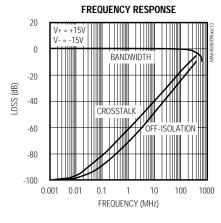
- Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- Note 3: NO_ pins are fault protected and COM_ pins are not fault protected. The max input voltage on NO_ pins depends on the COM_ load configuration. Generally the max input voltage is ±36V with ±15V supplies and a load referred to ground. For more detailed information refer to NO_ Input Voltage section.
- Note 4: Guaranteed by design.
- **Note 5:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- Note 6: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at $T_A = +25$ °C.
- Note 7: Off-isolation = $20log1_0$ (V_{COM_-}/V_{NO_-}), where V_{COM_-} = output and V_{NO_-} = input to off switch.
- Note 8: Between any two analog inputs.
- **Note 9:** Leakage testing for single-supply operation is guaranteed by testing with dual supplies.
- Note 10: Guaranteed by testing with dual supplies.

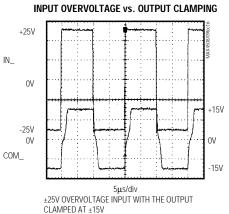

Typical Operating Characteristics


 $(V + = +15V, V - = -15V, V_{EN} = +2.4V, T_A = +25^{\circ}C, unless otherwise noted.)$




Typical Operating Characteristics (continued)


 $(V + = +15V, V - = -15V, V_{EN} = +2.4V, T_A = +25^{\circ}C, unless otherwise noted.)$



Pin Descriptions

MAX4508 (Single 8-to-1 Mux)

PIN	NAME	FUNCTION		
1	A0	Address Bit 0		
2	EN	Mux Enable		
3	V-	Negative Supply Voltage		
4	NO1	Channel Input 1		
5	NO2	Channel Input 2		
6	NO3	Channel Input 3		
7	NO4	Channel Input 4		
8	COM	Analog Output		
9	NO8	Channel Input 8		
10	NO7	Channel Input 7		
11	NO6	Channel Input 6		
12	NO5	Channel Input 5		
13	V+	Positive Supply Voltage		
14	GND	Ground		
15	A2	Address Bit 2		
16	A1	Address Bit 1		

MAX4509 (Dual 4-to-1 Mux)

PIN	NAME	FUNCTION	
PIN	NAME	FUNCTION	
1	A0	Address Bit 0	
2	EN	Mux Enable	
3	V-	Negative Supply Voltage	
4	NO1A	Channel Input 1A	
5	NO2A	Channel Input 2A	
6	NO3A	Channel Input 3A	
7	NO4A	Channel Input 4A	
8	COMA	Mux Output A	
9	COMB	Mux Output B	
10	NO4B	Channel Input 4B	
11	NO3B	Channel Input 3B	
12	NO2B	Channel Input 2B	
13	NO1B	Channel Input 1B	
14	V+	Positive Supply Voltage	
15	GND	Ground	
16	A1	Address Bit 1	

Truth Tables

MAX4508 (Single 8-to-1 Mux)

A2	A 1	A0	EN	ON SWITCH
Х	Х	Х	0	None
0	0	0	1	NO1
0	0	1	1	NO2
0	1	0	1	NO3
0	1	1	1	NO4
1	0	0	1	NO5
1	0	1	1	NO6
1	1	0	1	NO7
1	1	1	1	NO8

MAX4509 (Dual 4-to-1 Mux)

A 1	Α0	EN	COMA	СОМВ
Х	Х	0	None	None
0	0	1	NO1A	NO1B
0	1	1	NO2A	NO2B
1	0	1	NO3A	NO3B
1	1	1	NO4A	NO4B

Detailed Description

Traditional fault-protected multiplexers are constructed with three series FET switches. This produces good off protection, but limits the switches input voltage range to as much as 3V below the supply rails, reducing its usable dynamic range. As the voltage on one side of the switch approaches within about 3V of either supply rail (a fault condition), the switch impedance increases, limiting the output signal range to approximately 3V less than the appropriate polarity supply voltage.

The MAX4508/MAX4509 differ considerably from traditional fault-protected multiplexers, offering several advantages. First, they are constructed with two parallel FETs, allowing very low resistance when the switch is on. Second, they allow signals on the NO_ pins that are within or beyond the supply rails to be passed through the switch to the COM terminal. This allows rail-to-rail signal operation. Third, when a signal $V_{\rm NO}_{\rm exceeds}$ the supply rails (i.e., a fault condition), the voltage on COM_ is limited to the supply rails. Operation is identical for both fault polarities.

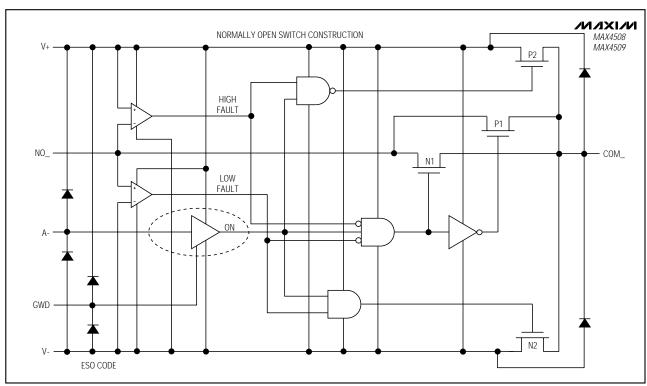


Figure 1. Functional Diagram

When the NO_ voltage goes beyond supply rails (fault condition), the NO_ input becomes high impedance regardless of the switch state or load resistance. When power is removed, and the fault protection is still in effect, the NO_ terminals are a virtual open circuit. The fault can be up to ± 40 V, with V+ = V- = 0. If the switch is on, the COM_ output current is furnished from the V+ or V- pin by "booster" FETs connected to each supply pin. These FETs can source or sink up to 10mA.

The COM_ pins are not fault protected. If a voltage source is connected to any COM_ pin, it should be limited to the supply voltages. Exceeding the supply voltage will cause high currents to flow through the ESD protection diodes, damaging the device (see *Absolute Maximum Ratings*).

Figure 1 shows the internal construction, with the analog signal paths shown in bold. A single normally open (NO) switch is shown. The analog switch is formed by the parallel combination of N-channel FET N1 and P-channel FET P1 which are driven on and off simultane-

ously, according to the input fault condition and the logic level state.

NO_ Input Voltage

The maximum allowable input voltage for safe operation depends on whether supplies are on or off and the load configuration at the COM output. If COM is referred to a voltage other than ground, but within the supplies, V_{NO} may range higher or lower than the supplies provided the absolute value of V_{NO} - V_{COM} is less than 40V. For example, if the load is referred to +10V at COM_, then the NO_ voltage range can be from +50V to -30V. As another example, if the load is connected to -10V at COM_, the NO_ voltage range is limited to -50V to +30V.

If the supplies are $\pm 15V$ and COM is referenced to ground through a load, the maximum NO_ voltage is $\pm 25V$. If the supplies are off and the COM output is referenced to ground, the maximum NO_ voltage is $\pm 40V$.

Normal Operation

Two comparators continuously compare the voltage on the NO_ pin with V+ and V- supply voltages. When the signal on NO_ is between V+ and V-, the multiplexer behaves normally, with FETs N1 and P1 turning on and off in response to A_ signals (Figure 1). The parallel combination of N1 and P1 forms a low-value resistor between NO_ and COM_ so that signals pass equally well in either direction.

Positive Fault Condition

When the signal on NO_ exceeds V+ by about 150mV, the positive fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance, regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET P2 turns on, clamping COM_ to V+.

Negative Fault Condition

When the signal on NO_ goes about 150mV below V-, the negative fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance, regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET N2 turns on, clamping COM_ to V-.

Transient Fault Condition

When a fast rising or falling transient on NO_ exceeds V+ or V-, the output (COM_) follows the input (NO_) to the supply rail with only a few nanoseconds delay. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, however, there is a longer output recovery time. For positive faults, the recovery time is typically 2.5µs (see *Typical Operating Characteristics*). For negative faults, the recovery time is typically 1.3µs. These values depend on the COM_ output resistance and capacitance. The delays do not depend on the fault amplitude. Higher COM_ output resistance and capacitance increase the recovery times.

COM and A_

FETs N2 and P2 can source about ±10mA from V+ or V- to the COM_ pin in the fault condition (Figure 1). Ensure that if the COM_ pin is connected to a low-impedance load, the absolute maximum current rating of 30mA is never exceeded, either in normal or fault conditions.

The GND, COM_, and A_ pins do not have fault protection. Reverse ESD protection diodes are internally connected between GND, COM_, A_, and both V+ and V-. If a signal on GND, COM_, or A_ exceeds V+ or V- by more than 300mV, one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak a few nanoamps of current to V+ and V-

Fault Protection Voltage and Power Off

The maximum fault voltage on the NO_ pins is $\pm 40V$ from ground when the power is off. With $\pm 15V$ supply voltages, the highest voltage on NO_ can be V- + 40V, and the lowest voltage on NO can be V+ - 40V. Exceeding these limits can damage the chip.

Logic Level Thresholds

The logic level thresholds are CMOS and TTL compatible with V+=13.5V to V+=16.5V.

Applications Information

Ground

There is no connection between the analog signal paths and GND. The analog signal paths consist of an N-channel and a P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase to V+ and V- by the logic-level translators.

V+ and GND power the internal logic and logic level translators and set the input logic thresholds. The logic-level translators convert the logic levels to switched V+ and V- signals to drive the gates of the multiplexers. This drive signal is the only connection between the power supplies and the analog signals. GND, A_, and COM_ have ESD protection diodes to V+ and V-.

Supply Current Reduction

When the logic signals are driven rail-to-rail from 0 to +15V or -15V to +15V, the current consumption will be reduced from $370\mu A$ (typ) to $200\mu A$.

Power Supplies

The MAX4508/MAX4509 operate with bipolar supplies between ±4.5V and ±20V. The V+ and V- supplies need not be symmetrical, but their sum cannot exceed the 44V absolute maximum rating.

The MAX4508/MAX4509 operate from single supplies between +9V and +36V when V- is connected to GND.

Test Circuits/Timing Diagrams

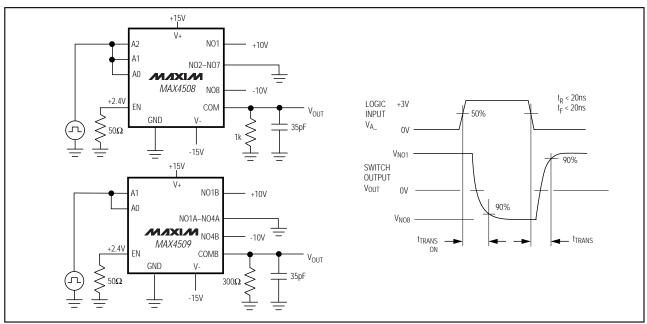


Figure 2. Address Transition Time

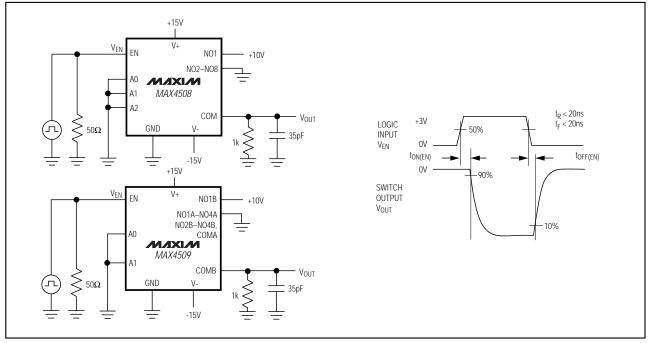


Figure 3. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

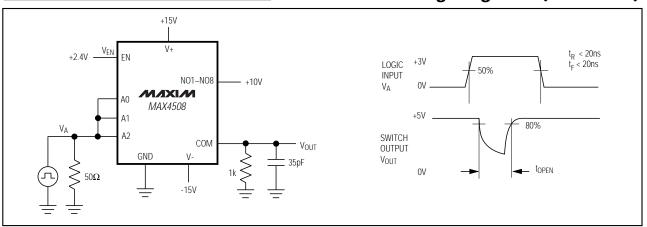


Figure 4. MAX4508 Break-Before-Make Interval

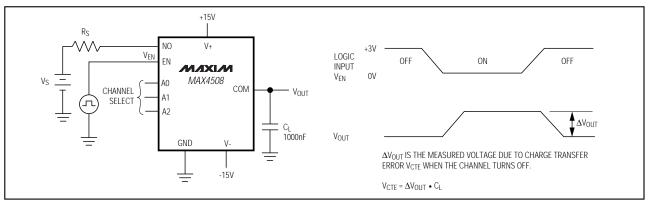


Figure 5. Charge Injection

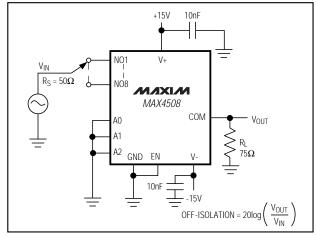


Figure 6. Off-Isolation

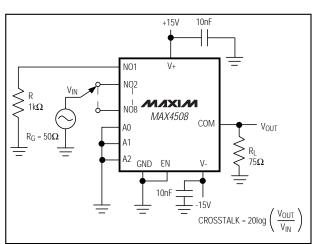


Figure 7. Crosstalk

Test Circuits/Timing Diagrams (continued)

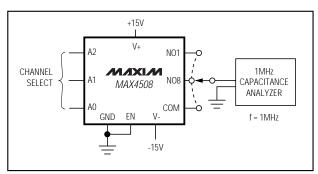


Figure 8. NO_, COM_ Capacitance

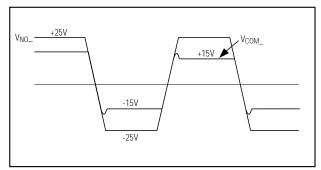
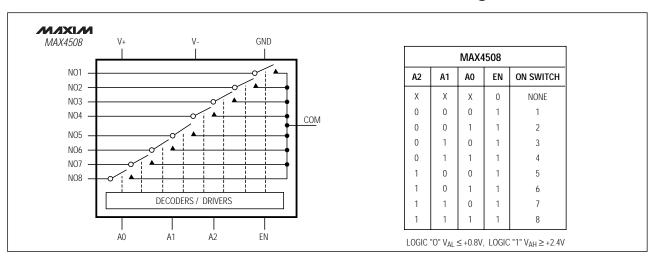
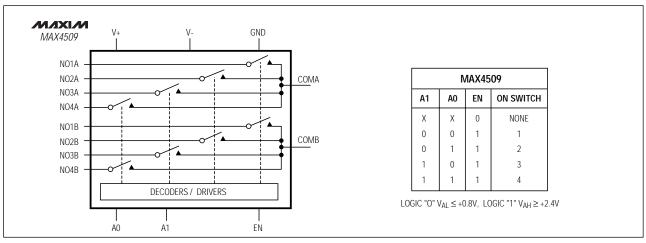
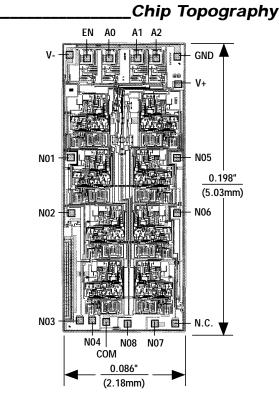




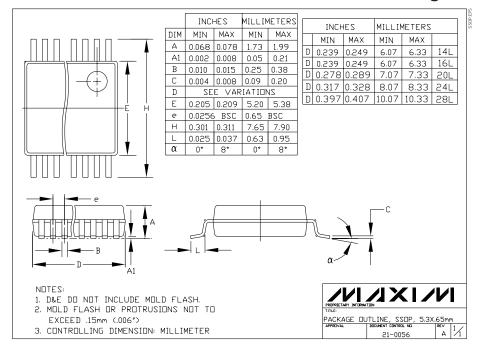
Figure 9. Transient Behavior of Fault Condition

Functional Diagrams/Truth Tables



Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4509CAE	0°C to +70°C	16 SSOP
MAX4509CSE	0°C to +70°C	16 Narrow SO
MAX4509CPE	0°C to +70°C	16 Plastic DIP
MAX4509C/D	0°C to +70°C	Dice*
MAX4509EAE	-40°C to +85°C	16 SSOP
MAX4509ESE	-40°C to +85°C	16 Narrow SO
MAX4509EPE	-40°C to +85°C	16 Plastic DIP
MAX4509MJE	-55°C to +125°C	16 CERDIP**


^{*}Contact factory for dice specifications.

TRANSISTOR COUNT: 543
SUBSTRATE IS INTERNALLY CONNECTED TO V+.

^{**}Contact factory for availability.

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.