捷多邦,专业PCB打样工厂,24小时加急出货

August 2005

Revised August 2005

FAIRCHILD

SEMICONDUCTOR

FSA2467 0.4W Low Voltage Dual SPDT Analog Switch

General Description

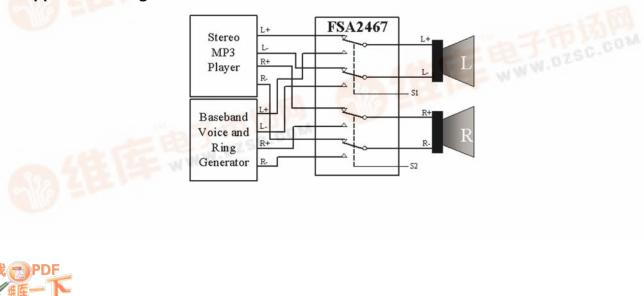
The FSA2467 is a Quad Single Pole Double Throw (SPDT) analog switch. The FSA2467 operates from a single 1.65V to 4.3V supply. The FSA2467 features an ultra-low On Resistance of 0.4W at a +2.7V supply and 25°C. This device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation.

FSA2467 features very low quiescent current even when the control voltage is lower than the V_{CC} supply. This feature services the mobile handset applications very well allowing for the direct interface with baseband processor general purpose I/Os.

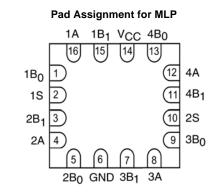
Features

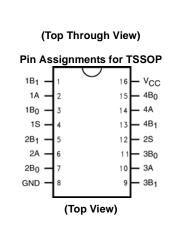
- Typical 0.4W On Resistance (R_{ON}) for +2.7V supply
- \blacksquare FSA2467 features less then 12µA I $_{CCT}$ current when ~S Input is lower than V $_{CC}$
- 0.25W maximum R_{ON} flatness for +2.7V supply
- 3x3mm 16-lead Pb-Free MLP package
- Broad V_{CC} operating range
- Low THD (0.02% typical for 32W load)

Applications


- Cell Phone
- PDA
- Portable Media Player

Ordering Code:


Order Number	Package Number	Package Description
FSA2467MPX	MLP16B	Pb-Free 16-Terminal Molded Leadless Package (MLP) Quad, JEDEC MO-220, 3mm Square
FSA2467MTC (Preliminary)	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Pb-Free package per JEDEC J-STD-020B.

Application Diagram

Connection Diagrams

Truth Table

Pin Descriptions

Control Input(s)	Function
L	nB ₀ Connected to nA
Н	nB ₁ Connected to nA

Pin Names	Function
nA, nB ₀ , nB ₁	Data Ports
nS	Control Input

H = HIGH Logic Level L = LOW Logic Level

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
Switch Voltage (V_S) (Note 2)	–0.5V to V _{CC} + 0.3V
Input Voltage (V _{IN}) (Note 2)	-0.5V to +4.6V
Input Diode Current	–50 mA
Switch Current	350 mA
Peak Switch Current (Pulsed at	
1 ms duration, <10% Duty Cycle)	500 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
Lead Temperature (T _L)	
Soldering, 10 seconds	+260°C
ESD	
Human Body Model	4500V

Recommended Operating Conditions

Supply Voltage (V _{CC})	1.65V to 4.3V
Control Input Voltage (VIN) (Note 3)	0V to $V_{\mbox{\scriptsize CC}}$
Switch Input Voltage (V _{IN})	0V to $V_{\mbox{\scriptsize CC}}$
Operating Temperature (T _A)	-40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

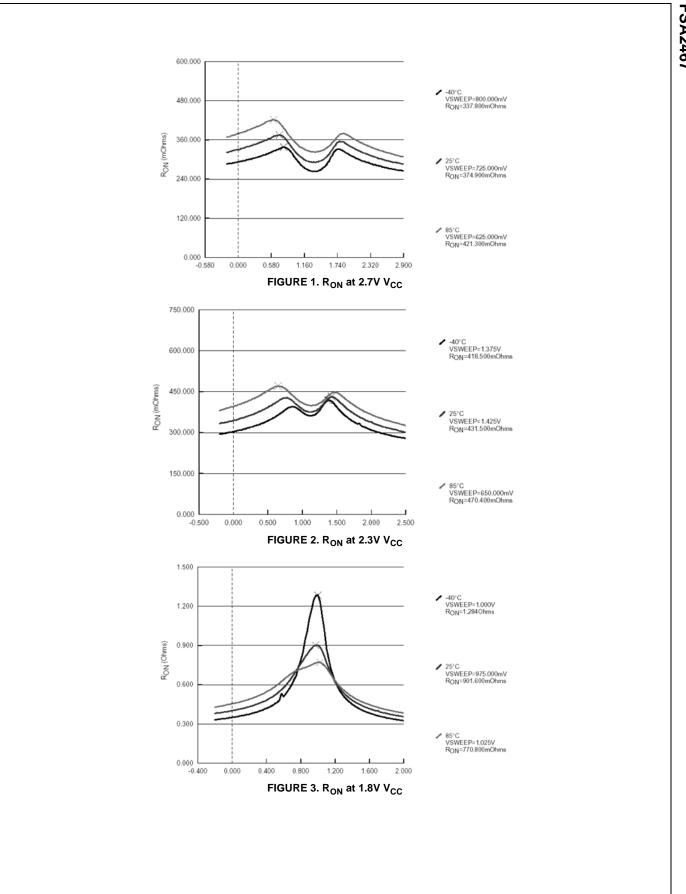
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics (All typical values are @ 25°C unless otherwise specified)

Symbol	Desembles	V _{cc}	T _A = +25°C			T _A = -40°C to +85°C			0
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
V _{IH}	Input Voltage High	4.3				1.4			
		2.7 to 3.6				1.3			
		2.3 to 2.7				1.1		V	
		1.65 to 1.95				0.9			
V _{IL}	Input Voltage Low	4.3					0.7		
		2.7 to 3.6					0.5		
		2.3 to 2.7					0.4	V	
		1.65 to 1.95					0.4		
I _{IN}	Control Input Leakage	1.65 to 4.3				-0.5	0.5	μA	$V_{IN} = 0V$ to V_{CC}
I _{NO(OFF)} ,	OFF-Leakage Current	4.05 1: 4.0	10.0		10.0	50.0	50.0	- 0	nA = 0.3V, V _{CC} - 0.3V
I _{NC(OFF)}	of Port nB ₀ and nB ₁	1.95 to 4.3	-10.0		10.0	-50.0	50.0	nA	$nB_0 \text{ or } nB_1 = 0.3 \text{V}, \text{V}_{CC} - 0.3 \text{V} \text{ or Floating}$
I _{A(ON)} ON Leakage of Port A	ON Leakage Current	1.95 to 4.3	10.0		10.0	-50.0 50.0	~ ^	nA = 0.3V, V _{CC} - 0.3V	
	of Port A		-10.0		10.0		50.0	nA	$nB_0 \text{ or } nB_1$ = 0.3V, V_{CC} – 0.3V or Floating
R _{ON}	Switch On Resistance	4.3		0.4			0.6		I _{OUT} = 100 mA,
	(Note 4)	2.7		0.4			0.6		$nB_0 \text{ or } nB_1 = 0V,$
								w	0.8V, 1.8V, 2.7V
		2.3		0.55			0.95	vv	$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0 \text{V},$
									0.7V, 1.2V, 2.3V
		1.8		0.8			2.0		$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 1.0 \text{ V}$
ΔR_{ON}	On Resistance Matching	2.7		0.04			0.1		$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0.8 \text{V}$
	Between Channels	2.3		0.03			0.1	W	$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0.7 \text{V}$
	(Note 5)								
R _{FLAT(ON)}	On Resistance Flatness	2.7					0.25	W	$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0 \text{V to } \text{V}_{CC}$
	(Note 6)	2.3					0.3	vv	
I _{CC}	Quiescent Supply Current	4.3	-100		100	-500	500	nA	$V_{IN} = 0V \text{ or } V_{CC}, I_{OUT} = 0V$
ICCT	Quiescent Supply Current	4.3		7.0	12.0		15.0	μA	V _{IN} = 1.8
				3.0	6.0		7.0	μΑ	V _{IN} = 2.6

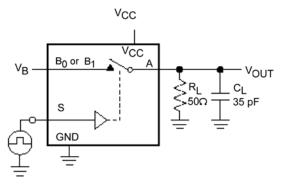
Note 4: On Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

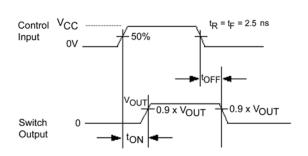
Note 5: $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC}, temperature, and voltage.


Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

AC Electrical Characteristics (All typical value are @ 25°C unless otherwise specified)

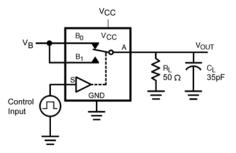
Symbol	Parameter	V _{cc}	т	r _A = +25°C	;	T _A = -40°	C to +85°C	Units	Conditions	Figure Number
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
t _{ON}	Turn ON Time	3.6 to 4.3			50.0		60.0		$nB_0 \text{ or } nB_1 = 1.5V,$	
		2.7 to 3.6			65.0		75.0	ns	$R_{L} = 50W, C_{L} = 35 \text{ pF}$	Figure 4
		2.3 to 2.7			80.0		90.0			
t _{OFF}	Turn OFF Time	3.6 to 4.3			32.0		40.0		$nB_0 \text{ or } nB_1 = 1.5V,$	
		2.7 to 3.6			42.0		50.0	ns	$R_{L} = 50W, C_{L} = 35 \text{ pF}$	Figure 4
		2.3 to 2.7			52.0		60.0			
t _{B-M}	Break-Before-Make	3.6 to 4.3		12.0					$nB_0 \text{ or } nB_1 = 1.5V,$	
	Time	2.7 to 3.6		15.0				ns	$R_{L} = 50W, C_{L} = 35 \text{ pF}$	Figure 5
		2.3 to 2.7		20.0						
Q	Charge Injection	3.6 to 4.3		15.0					C_L = 100 pF, V_{GEN} = 0V, R_{GEN} = 0W	
		2.7 to 3.6		10.0				рС	C_L = 100 pF, V_{GEN} = 0V, R_{GEN} = 0W	Figure 7
		2.3 to 2.7		8.0					C_L = 100 pF, V_{GEN} = 0V, R_{GEN} = 0W	
OIRR	OFF-Isolation	3.6 to 4.3		-75.0						
		2.7 to 3.6		-75.0				dB	f = 100kHz, R_L = 50W, C_L = 5 pF (Stray)	Figure 6
		2.3 to 2.7		-75.0						
Xtalk	Crosstalk	3.6 to 4.3		-75.0						
		2.7 to 3.6		-75.0				dB	f = 100kHz, R_L = 50W, C_L = 5 pF (Stray)	Figure 6
		2.3 to 2.7		-75.0						
BW	-3db Bandwidth	2.3 to 4.3		85.0				MHz	R _L = 50W	Figure 9
THD	Total Harmonic	3.6 to 4.3		0.02					$R_L = 32W$, $V_{IN} = 2V$ P.P, f= 20Hz to 20kHz	
	Distortion	2.7 to 3.6		0.02				%	R_L = 32W, V_{IN} = 1.5V P.P, f= 20Hz to 20kHz	Figure 10
		2.3 to 2.7		0.02					R _L = 32W, V _{IN} = 1.2V P.P, f= 20Hz to 20kHz	

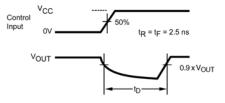

Capacitance

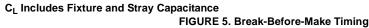

Symbol	Parameter	V _{CC}	T _A = +25°C		T _A = 40°C to +85°C		Units	Conditions	
Symbol	Faianietei	(V)	Min	Тур	Max	Min	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	0.0		1.5				pF	f = 1MHz (see Figure 8)
C _{OFF}	B Port OFF Capacitance	3.3		32.0				pF	f = 1MHz (see Figure 8)
C _{ON}	A Port ON Capacitance	3.3		118				pF	f = 1MHz (see Figure 8)

FSA2467

AC Loading and Waveforms






Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

C_L includes Fixture and Stray Capacitance

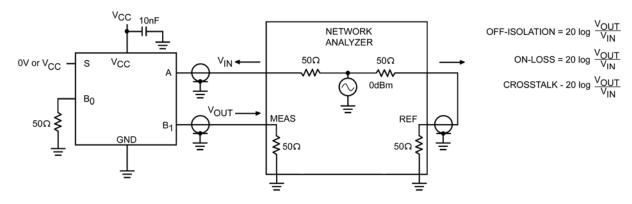
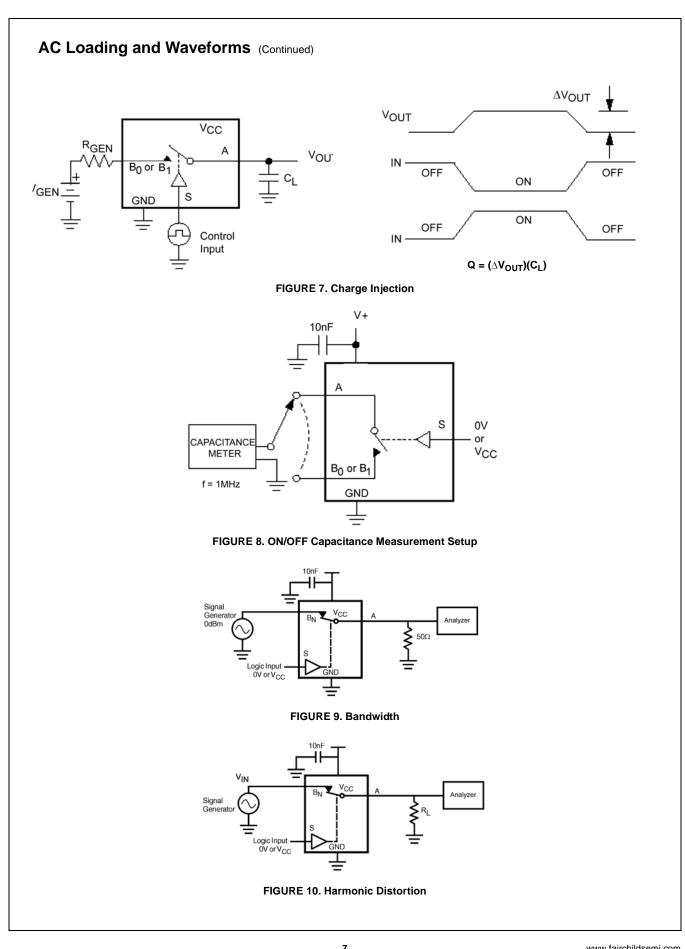
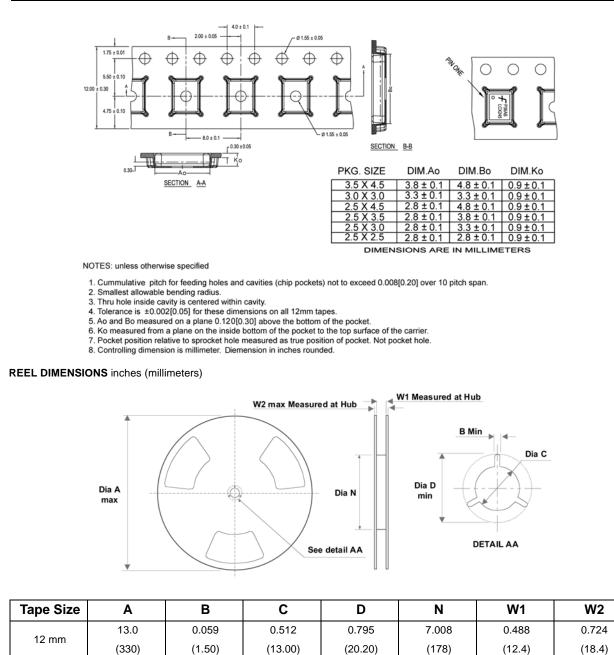
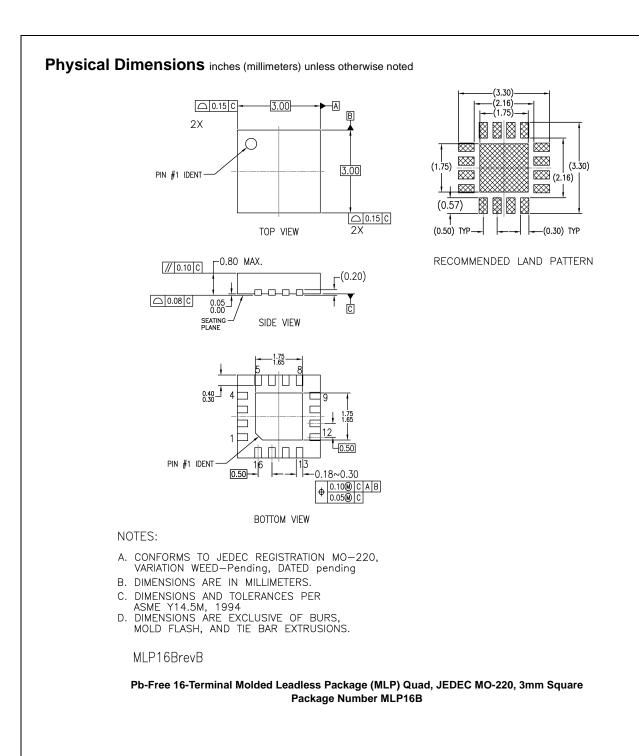



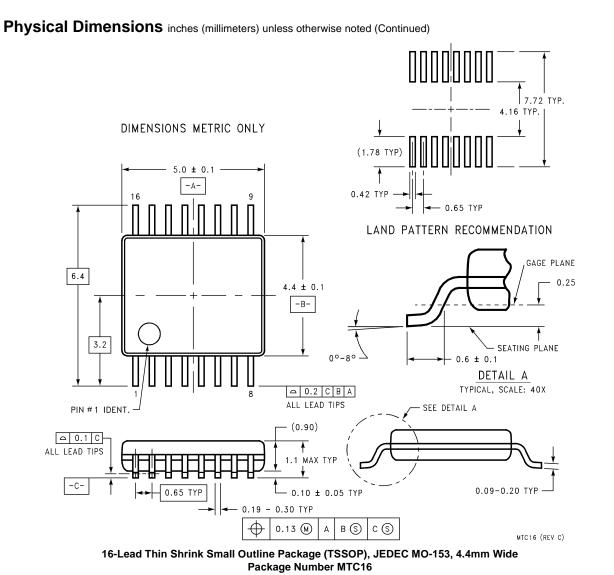
FIGURE 6. OFF Isolation and Crosstalk




FSA2467

Tape and Reel Specification

Tape Format For MLP


Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
	Leader (Start End)	125 (typ)	Empty	Sealed
MPX	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

FSA2467

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use

provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms							
Datasheet Identification	Product Status	Definition					
Advance Information	Formative or In Design	This datasheet contains the design specifications for product develop- ment. Specifications may change in any manner without notice.					
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.					
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.					
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for ref- erence information only.					