FAIROHILD				anuary 2002 evised March 2003
SEMICONDபCTOR＊				
FSAL200				
Wide Bandwidth Quad 2：1 Analog Multiplexer／Demultiplexer Switch				
General Description Features				
The Fairchild Switch FSAL200 is a rail－to－rail quad 2：1 high－speed CMOS TTL－compatible analog multiplexer／ demultiplexer switch．The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise． When $\overline{\mathrm{OE}}$ is LOW，the select pin connects the A Port to the selected B Port output．When $\overline{\mathrm{OE}}$ is HIGH，the switch is OPEN and a high－impedance state exists between the two ports．			－Typical 6Ω switch connection between two ports －Minimal propagation delay through the switch －Low ICc ■ Zero bounce in flow－through mode －Control inputs compatible with TTL level －Rail－to－rail signal handling －Low insertion loss －Route communications signals including： 10／100 Ethernet USB1． 1 100VG－AnyLAN Token Ring 4／16 Mbps ATM25 SONET OCI 51．8 Mbps T1／E1	
Ordering Code：				
Order Numbe	Package Number	Package Description		
FSAL200QSC	MQA16	16－Lead Quarter Size Outline Package（QSOP），JEDEC MO－137，0．150＂Wide		
Device also available in Tape and Reel．Specity by appending suffii letter＂X＂to the ordering code．				
Analog Symbol			Connection Diagram	
Truth Table			Pin Descriptio	
S	OE	Function	Pin Name	Description
X	H	Disconnect	$\overline{\mathrm{OE}}$	Switch Enable
L	L	$\mathrm{A}=\mathrm{B}_{1}$	S	Select Input
H	L	$\mathrm{A}=\mathrm{B}_{2}$	A， $\mathrm{B}_{1}, \mathrm{~B}_{2}$	Data Port

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S}) ((ote 2)	-0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$)	
@ ($\mathrm{I}_{\text {K }}$) $\mathrm{V}_{\mathrm{IN}<0 \mathrm{OV}}$	$-50 \mathrm{~mA}$
DC Output Current (lout)	120 mA
DC V_{CC} or Ground Current ($\mathrm{ICC}^{\text {/ }} \mathrm{INSD}$)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) @ $+85^{\circ} \mathrm{C}$	0.5 W
Ambient Temperature with	
Power Applied	$-40^{\circ} \mathrm{C}$ to +8

Recommended Operating
 Conditions (Note 3)

Supply Voltage Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	3.0 V to 5.5 V
Control Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to V_{CC}
Switch Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V}$ to $10 \mathrm{~ns} / \mathrm{V}$
\quad Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$350^{\circ} \mathrm{C} / \mathrm{W}$

Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

1. Absolute maximum ratings are DC values beyond which the device ay be damaged or have its useful life impaired. The datasheet specificaons should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading vari ables. Fairchild does not recommend operation outside datasheet specifi cations.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Control input must be held HIGH or LOW, it must not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ	Max		
V_{IH}	HIGH Level Input Voltage	$\begin{aligned} & 4.5-5.5 \\ & 3.0-3.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & 4.5-5.5 \\ & 3.0-3.6 \end{aligned}$	$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	
I_{OZ}	OFF State Leakage Current	0-5.5			100	nA	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
R_{ON}	Switch On Resistance (Note 4)	4.5-5.5		6	12	Ω	$\mathrm{I}_{\text {ON }}=10-30 \mathrm{~mA}$
		3.0-3.6		15	22		$\mathrm{I}_{\text {ON }}=10-30 \mathrm{~mA}$
$\overline{I_{\mathrm{IN}}}$	Control Input Leakage Current	5.5			± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
		3.6			± 1		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND
$\overline{\mathrm{ICC}}$	Quiescent Supply Current All Channels ON or OFF	5.5			1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{l}_{\mathrm{OUT}}=0 \end{aligned}$
	Analog Signal Range	V_{CC}	0		V_{CC}	V	
$\triangle \mathrm{R}_{\mathrm{ON}}$	On Resistance Match Between Channels (Note 4)(Note 5)	4.5-5.5		0.4	2	Ω	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$
		3.0-3.6		1	3		$\mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}} 2.1$
I_{0}	Output Current	4.5-5.5	100			mA	$\mathrm{B}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{S}=0 \mathrm{~V}$ to 5 V
		3.0-3.6	80				
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Note 4)(Note 6)	4.5-5.5		3		Ω	A, $\mathrm{B}_{1}, \mathrm{~B}_{2}=0 \mathrm{~V}$ to 5 V
		3.0-3.6		7			$\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}=0 \mathrm{~V}$ to 5 V

Note 4: Measured by the voltage
voltages on the two (A or B Ports).
Note 5: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels.
Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

AC Electrical Characteristics

Symbol	Parameter	v_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions	Figure Number
			Min	Typ	Max			
ton	Turn On Time	4.5-5.5		10	20	ns	$\mathrm{VB}_{\mathrm{n}}=3 \mathrm{~V}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
	S to Output	3.0-3.6		28	40	ns	$\mathrm{VB}_{\mathrm{n}}=1.5 \mathrm{~V}$	
$\mathrm{t}_{\text {OFF }}$	Turn Off Time	4.5-5.5		5	10	ns	$\mathrm{VB}_{\mathrm{n}}=3 \mathrm{~V}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
	S to Output	3.0-3.6		4	20	ns	$\mathrm{VB}_{\mathrm{n}}=1.5 \mathrm{~V}$	
Q	Charge Injection (Note 7)	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$		7 3		pC	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	Figure 3
OIRR	Off Isolation (Note 8)	4.5-5.5	-55			dB	$\begin{aligned} & R_{L}=100 \Omega \\ & f=30 \mathrm{MHz} \end{aligned}$	Figure 4
		3.0-3.6	-75			dB	$\begin{aligned} & R_{L}=50 \Omega \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Figure 4
$\overline{\text { Xtalk }}$	Crosstalk	4.5-5.5	-70			dB	$\begin{aligned} & R_{L}=100 \Omega \\ & f=30 \mathrm{MHz} \end{aligned}$	Figure 5
		3.0-3.6		-75		dB	$\begin{aligned} & R_{L}=50 \Omega \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Figure 5
BW	-3dB Bandwidth	4.5-5.5		137		MHz	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	Figure 8
		3.0-3.6		110		MHz	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 8
D	$\Delta \mathrm{R}_{\mathrm{ON} / \text { RL }}$ Distortion (Note 7)	4.5-5.5		2		\%	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	

Note 7: Guaranteed by Design.
Note 8: Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$
Capacitance (Note 9)

Symbol	Parameter	Typ	Max	Units	Conditions	Figure Number
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	2.3		pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	
$\mathrm{C}_{\text {IO-B }}$	B Port Off Capacitance	12		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and 3.0 V	Figure 6
	A Port Off Capacitance	20		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and 3.0 V	Figure 7
$\mathrm{C}_{\text {ON }}$	Channel On Capacitance	15		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and 3.0 V	Figure 7

AC Loading and Waveforms (Continued)

FIGURE 3. Charge Injection Test
Note: $\mathrm{R}_{\mathrm{L}}=50 \Omega$ when $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 10 \%$ for the Off Isolation, Crosstalk and Bandwidth test.

FIGURE 4. Off Isolation

FIGURE 6. Channel Off Capacitance

FIGURE 7. Channel On Capacitance

FIGURE 8. Bandwidth

Physical Dimensions inches (millimeters) unless otherwise noted

DETAIL A
TYPICAL, SCALE: 40%

DIMENSIONS ARE IN INCHES
NOA16 (REV A) Package Number MQA16

[^0] Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and

