

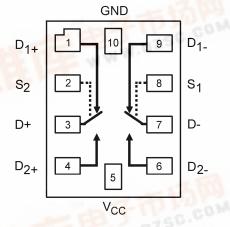
April 2004 Revised July 2004

FSUSB11

Low Power High Bandwidth USB Switch Dual SPDT Multiplexer/Demultiplexer

General Description

The FSUSB11 is a high performance Dual Single Pole Double Throw (SPDT) analog switch specially designed for the switching of both analog audio signal and USB 1.1 signals. The device features ultra low R_{ON} of 1.3Ω maximum at $4.5 \rm V \ V_{CC}$ and 4.3Ω at $2.7 \rm V$ supply. High bandwidth and ultra low ON Resistance (R_{ON}) make this switch to be able to pass both USB low and full speed signal with minimum signal distortion. The device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation. The select input is TTL level compatible.


Features

- Space saving MicroPak[™] packaging (1.6mm x 2.1mm)
- USB 1.1 signal switching compliant
- -3db bandwidth: >350MHz
- Maximum 1.15 Ω ON Resistance at 4.5V V_{CC} and 4 Ω for 2.7V supply
- 0.3Ω maximum R_{ON} flatness for +5V supply
- Broad V_{CC} operating range: 1.65V to 5.5V
- Fast turn-on and turn-off time
- Break-before-make enable circuitry
- Over-voltage tolerant TTL compatible control input

Ordering Code:

		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		一十一十一
FSUSB11L10X	MAC010A	ET	10-Lead MicroPak, 1.6 mm x 2.1mm	5K Units on Tape and Reel

Analog Symbols

(Top Through View)

Truth Table

Control Input(s)	Function
L	D ₁ Connected to D+/D-
Н	D ₂ Connected to D+/D-

H = HIGH Logic Level L = LOW Logic Level

Pin Descriptions

Pin Names	Function
D, D ₁ , D ₂	Data Ports
S	Control Input

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)

-0.5V to +6.0V Supply Voltage (V_{CC}) -0.5 V to $\text{V}_{\text{CC}} + 0.5 \text{V}$ Switch Voltage (V_S) (Note 2) Input Voltage (V_{IN}) (Note 2) -0.5V to +6.0V

Input Diode Current -50 mA Switch Current 200 mA

Peak Switch Current (Pulsed at

1 ms duration, <10% Duty Cycle) 400 mA

-65°C to +150°C Storage Temperature Range (T_{STG}) Maximum Junction Temperature (T_J) +150°C

Lead Temperature (T_I)

+260°C Soldering, 10 seconds

Human Body Model 8000V

Recommended Operating Conditions

Supply Voltage (V_{CC}) 1.65V to 5.5V Control Input Voltage (V_{IN}) (Note 3) 0V to V_{CC} 0V to V_{CC} Switch Input Voltage (VIN) Operating Temperature (T_A) -40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics (All typical values are @ 25°C unless otherwise specified)

Symbol	Parameter	v _{cc}	V_{CC} $T_A = +25^{\circ}C$		T _A = -40°C to +85°C		Units	Conditions		
Cyllibol	i arameter	(V)	Min	Тур	Max	Min	Max	Oilles	Conditions	
V _{IH}	Input Voltage High	2.7 to 3.6				2.0		V		
		4.5 to 5.5				2.4		l '		
V _{IL}	Input Voltage Low	2.7 to 3.6					0.6	V		
		4.5 to 5.5					8.0	l '		
I _{IN}	Control Input Leakage	2.7 to 3.6				-1.0	1.0	μА	$V_{IN} = 0V \text{ to } V_{CC}$	
		4.5 to 5.5				-1.0	1.0	μΛ	AIN — OA 10 ACC	
I _{NO(OFF)} ,	OFF-Leakage Current	5.5	-50.0		50.0	-100	100	nA	A = 1V, 4.5V	
I _{NC(OFF)}	of Port D ₁ and D ₂	5.5	-50.0		30.0	-100	100	IIA	B_0 or $B_1 = 1V$, 4.5V	
I _{A(ON)}	ON Leakage Current	5.5	5.5 -50.0 50.0 -1	100	-100 100	nA	A = 1V, 4.5V			
	of Port D	5.5	-30.0		30.0	-100	100	IIA.	B_0 or $B_1 = 1V$, 4.5V or Floating	
R _{ON}	Switch ON Resistance	2.7		2.6	4.0		4.3	Ω	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 1.5 \text{V}$	
	(Note 4)	4.5		0.95	1.15		1.3	32	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 3.5 \text{V}$	
ΔR_{ON}	ON Resistance Matching	2.7						Ω	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 1.5 \text{V}$	
	Between Channels (Note 5)	4.5		0.06	0.12		0.15	32	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 3.5 \text{V}$	
R _{FLAT(ON)}	ON Resistance Flatness	2.7		1.4				Ω	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 0V, 0.75V, 1.5V$	
	(Note 6)	4.5		0.2	0.3		0.4	32	$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 0V, 1V, 2V$	
Icc	Quiescent Supply Current	3.6		0.1	0.5		1.0	μА	$V_{IN} = 0V$ or V_{CC} , $I_{OLIT} = 0V$	
		5.5		0.1	0.5		1.0	μΛ	AIN - OA OL ACC' LOUL - OA	

Note 4: ON Resistance is determined by the voltage drop between D and D_n pins at the indicated current through the switch.

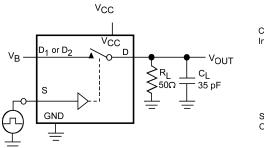
Note 5: $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.

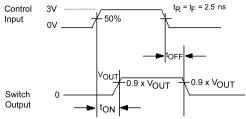
Note 6: Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions.

AC Electrical Characteristics (All typical value are @ 25°C unless otherwise specified)

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to		C to +85°C	Units	Conditions	Figure			
- Cymbol		(V)	Min	Тур	Max	Min	Max	Oilles	Conditions	Number	
t _{ON}	Turn ON Time	2.7 to 3.6			50.0		60.0	ns	D_1 or D_2 = 1.5V, R_L = 50Ω , C_L = 35 pF	Figure 1	
		4.5 to 5.5			35.0		40.0	113	$D_1 \text{ or } D_2 = 3.0 \text{V}, \ R_L = 50 \Omega, \ C_L = 35 \ \text{pF}$	i iguie i	
t _{OFF}	Turn OFF Time	2.7 to 3.6			20.0		30.0	ns	D_1 or $D_2 = 1.5$ V, $R_L = 50\Omega$, $C_L = 35$ pF D_1 or $D_2 = 3.0$ V, $R_L = 50\Omega$, $C_L = 35$ pF	Figure 1	
		4.5 to 5.5			15.0		20.0	113	D_1 or $D_2 = 3.0$ V, $R_L = 50\Omega$, $C_L = 35$ pF		
t _{B-M}	Break-Before-Make	2.7 to 3.6				1.0		ns	D_1 or D_2 = 1.5V, R_L = 50Ω , C_L = 35 pF	Figure 2	
	Time	4.5 to 5.5		20.0		1.0		113	D_1 or $D_2 = 3.0$ V, $R_L = 50\Omega$, $C_L = 35$ pF	i iguite 2	
Q	Charge Injection	2.7 to 3.6		20.0				рС	$C_L = 1.0 \text{ nF}, V_{GEN} = 0V,$	Figure 4	
		4.5 to 5.5		10.0				рО	$R_{GEN} = 0\Omega$	i igale 4	
OIRR	OFF-Isolation	2.7 to 3.6		-70.0				dB	$f = 1MHz, R_1 = 50\Omega$	Figure 3	
		4.5 to 5.5		-70.0				uв	1 - 11VII 12, INC - 3022	Figure 3	
Xtalk	Crosstalk	2.7 to 3.6		-75.0				dB	$f = 1MHz, R_1 = 50\Omega$	Eiguro 2	
		4.5 to 5.5		-75.0				ав	1 = 1MHZ, RL = 5022	Figure 3	
BW	-3db Bandwidth	2.7 to 3.6		350				MHz	P. – 500	Figure 6	
		4.5 to 5.5		350					11/2 - 3022	rigure 6	

USB Related AC Electrical Characteristics

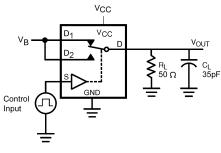

(All typical value are @25°C unless otherwise specified)

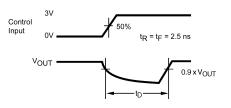

Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$		Units	Conditions	Figure
Oymboi	rarameter	(V)	Min	Тур	Min	Oilles	Conditions	Number
t _{SKEW}	Skew	2.7 to 3.6		0.15			$R_S = 39\Omega$, $C_L = 50 pF$	Figure 7
		4.5 to 5.5		0.15		113	$t_R = t_F = 12$ ns	i iguic i
t _M	Rising/Fall Time	2.7 to 3.6			10.0	%	at 12Mbps	Figure 7
	Mismatch	4.5 to 5.5			10.0	%	(Duty Cycle = 50%)	rigule /
tJ	Total Jitter	2.7 to 3.6		1.7		ns	$R_S = 39\Omega$, $C^L = 50$ pF, $t_R = t_F = 12$ ns at	Figure 7
		4.5 to 5.5		1.6		115	12Mbps (PRBS = $2^{15} - 1$)	i iguie i

Capacitance

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			Units	Conditions		
- Cyllibor	T drameter	(V)	(V) Min Typ		Max	Omio	Conditions	
C _{IN}	Control Pin Input Capacitance	0.0		3.5		pF	f = 1MHz (see Figure 5)	
C _{OFF}	C _{OFF} D _n Port OFF Capacitance			12.0		pF	f = 1MHz (see Figure 5)	
C _{ON}	ON D Port ON Capacitance			55.0		pF	f = 1MHz (see Figure 5)	

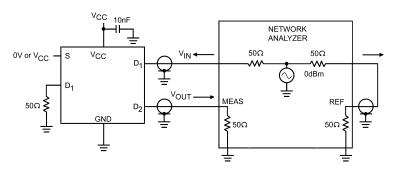
AC Loading and Waveforms



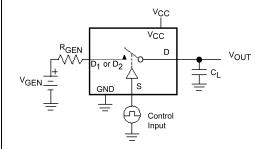


 $\mathbf{C}_{\mathbf{L}}$ includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense


FIGURE 1. Turn-On/Turn-Off Timing

C_L Includes Fixture and Stray Capacitance


FIGURE 2. Break-Before-Make Timing

OFF-ISOLATION = 20 $\log \frac{V_{\text{OUT}}}{V_{\text{IN}}}$ ON-LOSS = 20 $\log \frac{V_{\text{OUT}}}{V_{\text{IN}}}$ CROSSTALK - 20 $\log \frac{V_{\text{OUT}}}{V_{\text{IN}}}$

FIGURE 3. OFF Isolation and Crosstalk

AC Loading and Waveforms (Continued)

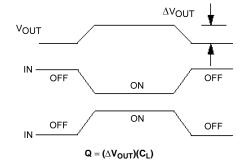
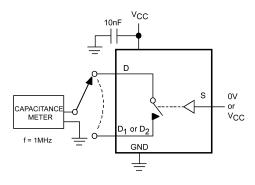



FIGURE 4. Charge Injection

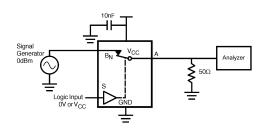
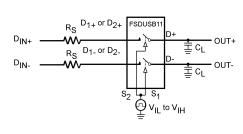



FIGURE 5. ON/OFF Capacitance Measurement Setup

FIGURE 6. Bandwidth

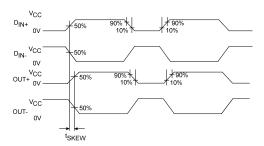


FIGURE 7. Skew Test

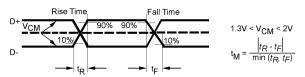
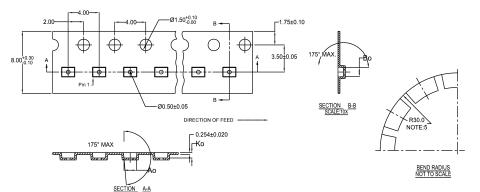
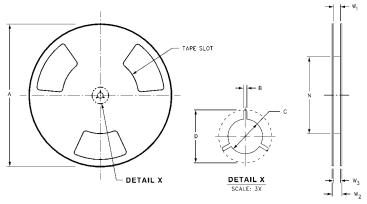



FIGURE 8. Rise/Fall Time Mismatch Test

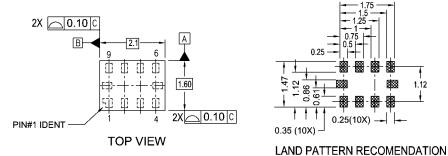
Tape and Reel Specification Tape Format For Micropak 10

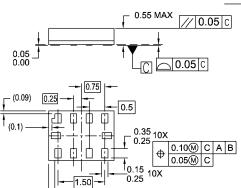
Tape I of mat I of will	ape i of micropak to								
Package	Tape	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
L10X	Carrier	5000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

0 00000 1.7010.00 1.7010.00	0.00 ± 0.00
8 300038 1.78±0.05 1.78±0.05	0.68 ± 0.05
10 300056 2.30±0.05 1.78±0.05	0.68 ± 0.05


NOTES: UNLESS OTHERWISE SPECIFIED

- 1. ACCUMULATED 50 SPROCKETS, SPROCKET HOLE PITCH IS 200.00 ±0.30MM
- 2. NO INDICATED CORNER RADIUS IS 0.127MM 3. CAMBER NOT TO EXCEED 1MM IN 100MM
- 4. SMALLEST ALLOWABLE BENDING RADIUS
- 5. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE


SCALE: 6X


REEL DIMENSIONS inches (millimeters)

Tape Size	Α	В	C	D	N	W1	W2	W3
0	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted

BOTTOM VIEW

NOTES:

- A. PACKAGE CONFORMS TO JEDEC MO255, VARIATION UABD
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES CONFORMS TO ASME Y14.5M, 1994.

MAC010ARevB

10-Lead MicroPak, 1.6 mm x 2.1mm Package Number MAC010A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com