

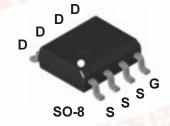
June 1999 **DISTRIBUTION GROUP***

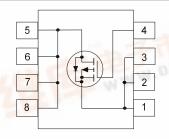
Si9430DY

Single P-Channel Enhancement Mode MOSFET

General Description

This P-Channel Enhancement Mode MOSFET is produced using Fairchild Semiconductor's advance process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.


This device is well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.


Applications

- · Battery switch
- Load switch
- Motor controls

Features

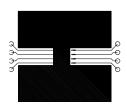
- -5.8 A, -20 V. $R_{DS(on)} = 0.050 \Omega$ @ $V_{GS} = -10 V$ $R_{DS(on)} = 0.090 \Omega$ @ $V_{GS} = -4.5 V$.
- · Low gate charge.
- · Fast switching speed.
- High power and current handling capability.

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	-5.8	Α
	- Pulsed		-20	TO YELL
P _D	Power Dissipation for Dual Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	
		(Note 1c)	1.0	
T _J , T _{STG}	Operating and Storage Junction Tempera	-55 to +150	∘C	

Thermal Characteristics

R _{eJA}	Thermal Resistance, Junction-to-Ambient	50	∘C/W
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)	25	∘C/W


Package Marking and Ordering Information

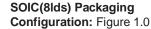
I GORGGO MIGHE	dila Ciacillo	11110111110011			
Device Marking	Device Marking Device		Tape width	Quantity	
9430	Si9430DY	13"	12mm	2500 units	

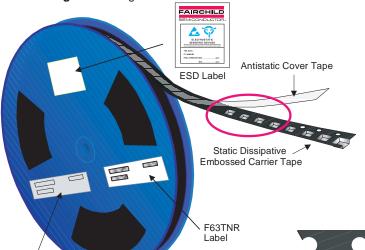
Die and manufacturing source subject to change without prior notification.

Symbol	Parameter	Parameter Test Conditions				Units
Off Cha	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-20			V
<u>∆</u> BVDSS ∆T.i	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		-16		mV/∘C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V V _{DS} = -10 V, V _{GS} = 0 V, T _J = 70∘C			-1 -5	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Chai	racteristics (Note 2)		•			•
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.0			V
$\frac{\Delta V_{GS(th)}}{\Delta T_{.l}}$	Gate Threshold Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		3.5		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -5.3 \text{ A}$ $V_{GS} = -6 \text{ V}, I_D = -3.6 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -2 \text{ A}$		0.038 0.046 0.064	0.050 0.060 0.090	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-20 -5	5.551	0.000	А
g _{FS}	Forward Transconductance	$V_{DS} = -15 \text{ V}, I_{D} = -5.3 \text{ A}$		10		S
Dynami	c Characteristics					
Ciss	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$		950		pF
Coss	Output Capacitance	f = 1.0 MHz		610		pF
C _{rss}	Reverse Transfer Capacitance			220		pF
Switchi	ng Characteristics (Note 2					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, I_D = -1 \text{ A}, R_L = 10 \Omega$		9	30	ns
t _r	Turn-On Rise Time	$V_{GS} = -10 \text{ V, } R_{GEN} = 6 \Omega$		21	60	ns
t _{d (off)}	Turn-Off Delay Time	†		21	120	ns
t _f	Turn-Off Fall Time	1		8	100	ns
trr	Drain-Source Reverse Recovery Time	$I_F = -2.4 \text{ A}, \text{ di/dt} = 100 \text{A/} \mu \text{s}$			100	nS
Qq	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_{D} = -5.3 \text{ A},$		27	50	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -10 V		3		nC
Q _{gd}	Gate-Drain Charge			9		nC
	ource Diode Characteris	tics and Maximum Ratings				
Drain_94		<u>uos anu maximum itaunys</u>				,
<u>Drain-So</u> ∣ _s	Maximum Continuous Drain-S	ource Diode Forward Current			-2.4	A

^{1:} R_{0,JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

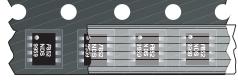
a) 50° C/W when mounted on a 1 in² pad of 2 oz. copper.





Scale 1 : 1 on letter size paper
2: Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

SO-8 Tape and Reel Data and Package Dimensions



Packaging Description:

SOIC-8 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13° or 330m diameter reel. The reels are dark blue in color and is made of polystyrene plastic (anti-static coated). Other option comes in 500 units per 7° or 177cm diameter reel. This and some other options are further described in the Packaging Information table.

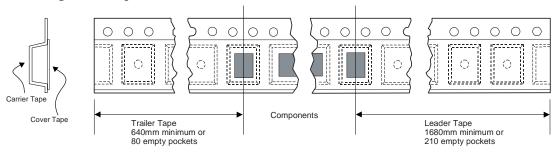
These full reels are individually barcode labeled and placed inside a standard intermediate box (illustrated in figure 1.0) made of recyclable corrugated brown paper. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts

Packaging Option no flow code) Packaging type Rail/Tube TNR TNR Qty per Reel/Tube/Bag 2,500 95 4,000 500 Reel Size 13" Dia 13" Dia 7" Dia Box Dimension (mm) 343x64x343 530x130x83 343x64x343 184x187x47 Max qty per Box 5,000 30,000 8,000 1,000

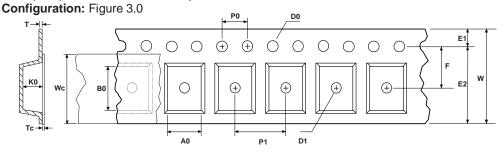
SOIC (8lds) Packaging Information

Weight per unit (gm) 0.0774 0.0774 0.0774 0.0774 Weight per Reel (kg) 0.6060 0.9696 0.1182 Note/Comments

SOIC-8 Unit Orientation


F63TNR Label sample

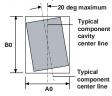
Customized


343mm x 342mm x 64mm Standard Intermediate box ESD Label F63TN Label

SOIC(8lds) Tape Leader and Trailer Configuration: Figure 2.0

SO-8 Tape and Reel Data and Package Dimensions, continued

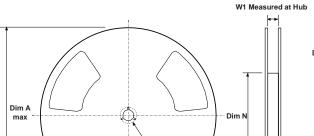

SOIC(8lds) Embossed Carrier Tape


User Direction of Feed	
	$\overline{}$

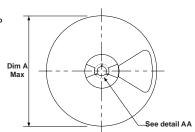
	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOIC(8lds) (12mm)	6.50 +/-0.10	5.30 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.1 +/-0.10	0.450 +/- 0.150	9.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation



Sketch B (Top View)
Component Rotation



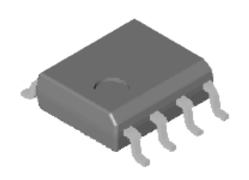
Sketch C (Top View)
Component lateral movement

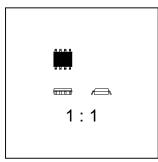
SOIC(8lds) Reel Configuration: Figure 4.0

13" Diameter Option

7" Diameter Option B Min Dim D min

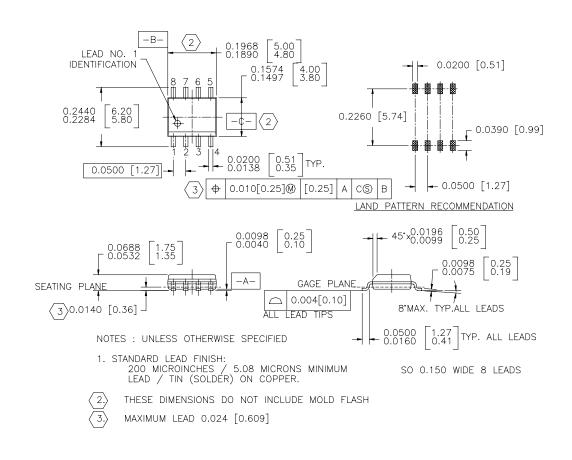
	1		
DETA	11	۸ ۸	١.


	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
12mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	7.00 178	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4


W2 max Measured at Hub

See detail AA

SO-8 Tape and Reel Data and Package Dimensions, continued


SOIC-8 (FS PKG Code S1)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.0774

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet\,Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.