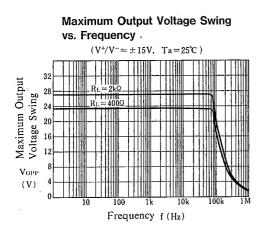
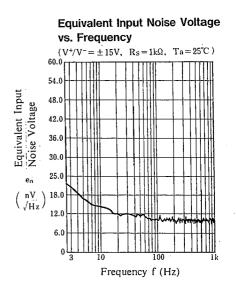


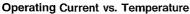
EQUIVALENT CIRCUIT (1/2 Shown)

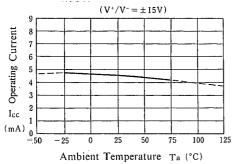
ABSOLUTE MAXIMUM RATINGS			(Ta=25℃)	
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±18	v	
Differential Input Voltage	Vid	±30	v	
Input Voltage	V _{IC}	±15 (note)	v	
Power Dissipation		(DIP8) 500	mW	
	PD	(DMP8) 300	mW	
		(SSOP8) 250	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	Tsig	-40~+125	°C	


(note) For supply voltage less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.


ELECTRICAL CHARACTERISTICS

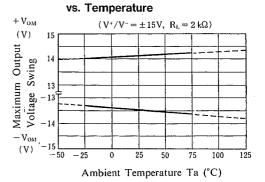
$(Ta=25^{\circ}C, V^{*}/V^{-}=\pm 15V)$


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio	R _s ≦10kΩ	-	0.5	3.0	mV
Input Offset Current	Lio		—	2	50	nA
Input Bias Current	IB		-	50	200	пA
Input Resistance	RIN		0.3	5	-	MΩ
Large Signal Voltage Gain	Av	$R_{L} \ge 2k\Omega, V_{O} = \pm 10V$	86	100	-	dBı
Maximum Output Voltage Swing 1	Vomi	$R_{L} \ge 2k\Omega$	±12	±14	-	v
Maximum Output Voltage Swing 2	V _{OM2}	$I_{O}=25mA$	±10	±11.5	- 1	v
Input Common Mode Voltage Range	VICM		±12	±14		v
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	70	90	1 —	dB
Supply Voltage Rejection Ratio	SVR	R _s ≦10kΩ	76.5	90	-	dB
Operating Current	Icc			4.5	7	mA
Slew Rate	SR		-	4	-	V/µs
Gain Bandwidth Product	GB		-	10	-	MHz
Equivalent Input Noise Voltage	V _{NI}	RIAA, $R_s=2.2k\Omega$, 30kHz LPF	-	1.2	-	μVrms


TYPICAL CHARACTERISTICS

Maximum Output Voltage Swing vs. Load Resistance $(V^+/V^- = \pm 15V, Ta = 25^{\circ}C)$

Voltage Gain Phase vs. Frequency

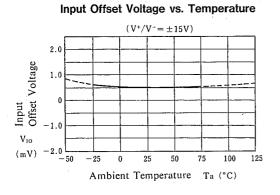

 $(V^+/V^- = \pm 15 V, R_L = 2 k\Omega, 40 dBAmp, Ta = 25^{\circ}C)$

50

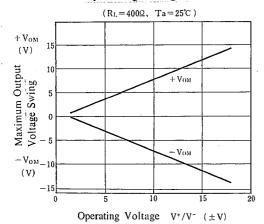
Voltage Gain

Av

(dB)

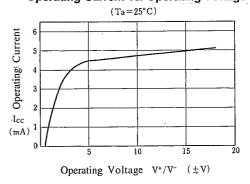


Maximum Output Voltage Swing


4

NJM4565

TYPICAL CHARACTERISTICS



Maximum Output Voltage Swing vs. Operating Voltage

Input Bias Current vs. Temperature $(V^{+}/V^{-} = \pm 15V)$ 90 80 Input Bias Current: 70 60 50 40 30 $I_{\rm B}$ 20 10 (nA) 0 <u></u> -50 -2550 75 100 125 0 25 Ambient Temperature Ta (°C)

Operating Current vs. Operating Voltage

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -