JRO

SERIES REGULATOR WITH RESET FUNCTION

■ GENERAL DESCRIPTION

The NJM78LR05 is a series regulator with reset function.

In case of shut down or output voltage drop, the IC generates reset signal to a microcomputer.

That is suitable for items with microcomputer. such as TV sets, remote controller, refrigerator and others.

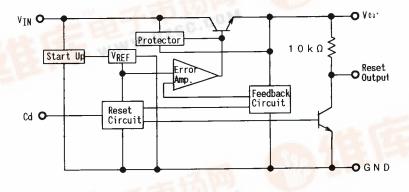
■ FEATURES

Output Current

lo=150mA

- Reset Function Including
- Reset Delay Time can be Adjusted

by an External Capacitance.


- ●Internal Over Current Protection
- ●Thermal Shut Down
- Bipolar Technology
- W.DZSG.COM ●Package Outline DIP8, DMP8, SIP8, SOT-89 (5Pin)

■ RESET THRESHOLD VOLTAGE LINE-UP

Reset Threshold Voltage	Version	Part Number
4. 0 V	Đ	NJM78LR05DX
4. 2 V	С	NJM78LR05CX
4.3 V	В	NJM78LR05DX

"X" is package suffix.

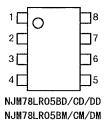
■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM78LRO5BD/CD/DD

NJM78LR05BM/CM/DM

NJM78LR05BL/CL/DL


NJM78LR05BU/CU/DU

NJM78LR05

■ PIN CONFIGURATION

NJM78LR05BL/CL/DL

5 7 1

NJM78LR05BU/CU/DU

PIN FUNCTION

- 1. INPUT
- 2. NC
- 3. Cd
- 4. NC
- 5. GND
- 6. RESET-OUTPUT
- 7. NC
- 8. OUTPUT

PIN FUNCTION

- 1. Cd
- 2. GND
- 3. RESET-OUTPUT
- 4. OUTPUT
- 5. INPUT

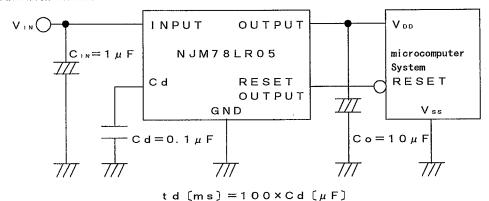
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	MAXIMUM RATINGS	UNIT	
Input Voltage	VIN	+20	V	
Power Dissipation	Pυ	(DIP8) 5 0 0 (DMP8) 5 0 0 % (SIP8) 8 0 0 (SOT-89) 3 5 0	mW	
Operating Temperature Range	Topr	-40~+85	လူ	
Storage Temperature Range	Tstg	-50~+150	°C	

XAt on PC board.

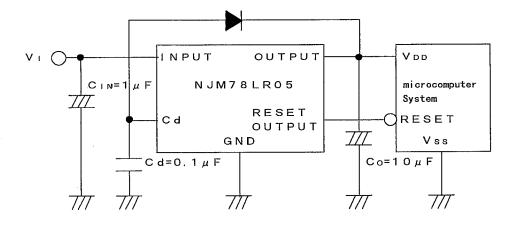
■ RECOMMENDED OPERATING CONDITIONS

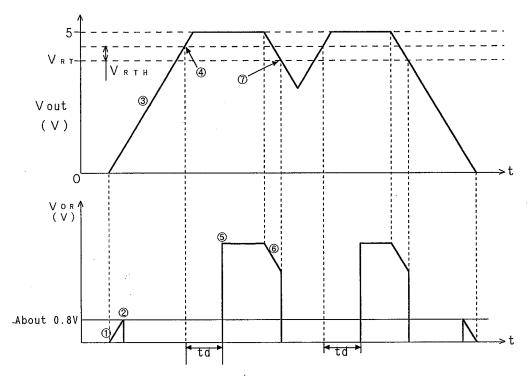

(Ta=25°C)

PARAMETER	SYMBOL	CONDITIONS	UNIT	
Input Voltage	Vin	7.5~18		
Output Current	lo	1~100	m A	

ELECTRICAL CHARACTERISTICS (V_{IN}=1 0 V, I o = 4 0 m A, C_{IN}=1 μ F, C o = 1 0 μ F, T a = 2 5 °C) (Power Supply Block)

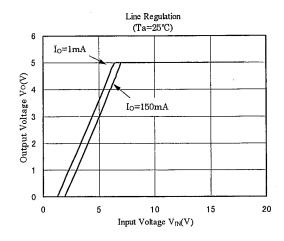
			,			
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vο	I o = 1 m A	4. 80	5. 00	5. 20	٧
Quiescent Current	l a	1 o = 1 0 0 m A	_	1. 40	3. 40	m A
Output Short Current	Losc	OUTPUT-GND short	150	300	450	mΑ
Line Regulation 1	⊿ Vo/V _{IN} 1	7 V ≦ V ₁N ≦ 1 8 V	_	6.0	65. 0	m V
Line Regulation 2	△Vo/Vin2	8 V ≦ V , N ≦ 1 8 V	_	3. 0	42. 0	m۷
Load Regulation 1	⊿Vo/lo1	I o = 1 ~ 1 0 0 m A	_	9.0	60. 0	m۷
Load Regulation 2	∠Vo/lo2	I o = 1 ~ 4 0 m A	_	3.0	30. 0	m V
Ripple Rejection	RR	f=120Hz, e;=1V _{P-P} , V _{1N} =8~18V	_	79	_	dВ
Output Noise Voltage	Vno	10Hz≤ f ≤100kHz, I o = 1 m A		80		μV
Dropout Voltage	⊿ V 1 -0			1.5	2. 2	V
[Reset Block]	<u> </u>					
(H) Reset Output Voltage	Vorh		4. 80	5. 00	5. 20	V
(L) Reset Output Voltage	Vorl	V _{1N} =3 V, i o=1 mA	_	10	200	m V
Reset Threshold V Voltage	VRT	B Version	4. 12	4. 30	4.48	V
		C Version	4. 03	4. 20	4. 37	1
		D Version	3. 84	4. 00	4. 16	
Reset Threshold Hysteresis Voltage	VRTH		50	100	200	m V
Reset Output Delay Time	t d	C d = 0.1 μ F	7. 50	10.0	12. 5	ms

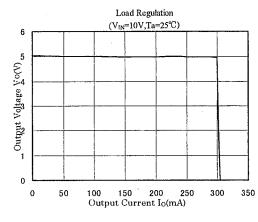

■ APPLICATION CIRCUIT

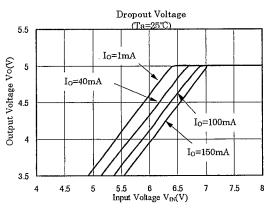

Note1: When the capacitance Cd is too large, the actual delay time is shorter than the calculated result because an electrical charge of Cd is discharged incompletely.

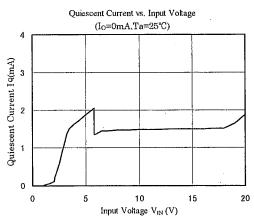
Solution of above problem:

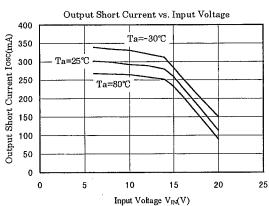
- (1) Connect SBD between output terminal and Cd terminal. Please refer to the fallowing circuit.
- (2) Select larger capacitance, CIN than Cd.

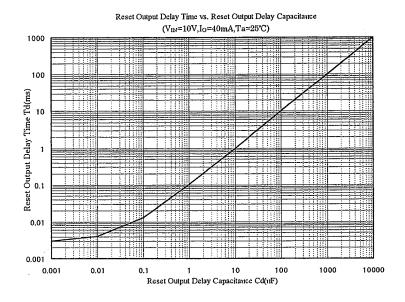

TIMING CHART

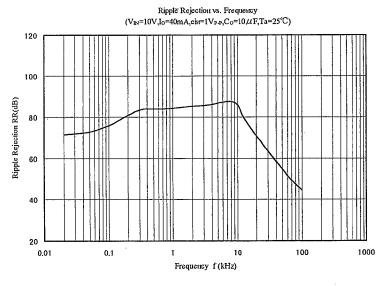


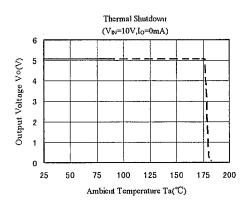

- ① When the input voltage is up to about 0.8V, some voltage is outputted at the reset output because the NJM78LR05 operation is unstable.
- (2) When the input voltage goes over about 0.8V , the reset output becomes "L".
- 3 The output voltage is rising up with the input voltage.
- 4 When the output voltage goes over $(V_{RT}+V_{RTH})$, the delay circuit of reset output activates. V_{RT} : Reset Threshold Voltage

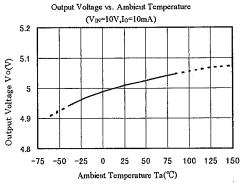

 V_{RTH} :Reset Threshold Hysterisis Voltage

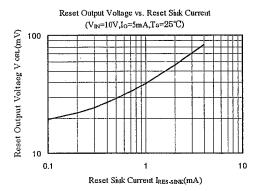

- \bigcirc After the reset output delay time td has passed, the reset output becomes "H".
- 6 The output voltage is falling down with the input voltage.
- \bigcirc When the output voltage is less than V_{RT} , the reset output becomes "L".






6





NJM78LR05

TYPICAL CHARACTERISTICS

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.