DUAL DMOS FULL BRIDGE MOTOR DRIVER
－OPERATING SUPPLY VOLTAGE FROM 8 TO 52 V
■ 2．8A PEAK CURRENT（1．4A DC）
－RDS（ON） 0.73Ω TYP．VALUE＠ $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
－CROSS CONDUCTION PROTECTION
－THERMAL SHUTDOWN
－OPERATING FREQUENCY UP TO 100 KHz
－HIGH SIDE OVER CURRENT PROTECTION
－CMOS／TTL INPUT
－INTRINSIC FAST FREE WHEELING DIODES
－UNDER VOLTAGE LOCKOUT

TYPICAL APPLICATIONS

－STEPPER MOTOR
－DUAL OR QUAD DC MOTOR

DESCRIPTION

The L6225 is a dual full bridge driver for motor control applications manufactured with Multipower BCD technology which combines isolated DMOS power

PRELIMINARY DATA

transistors with CMOS and bipolar circuits on the same chip．
The Logic Inputs are CMOS／TTL and $\mu \mathrm{P}$ compatible． The High Side switches are protected against unsafe over current conditions．
Each full bridge is controlled by a separate Enable and has a sense pin for the current sense resistor in－ sertion．Another feature is the thermal shutdown．
The L6225 is assembled in PowerDIP20（16＋2＋2）， PowerSO20 and SO20（16＋2＋2）packages．

BLOCK DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Test conditions	Value	Unit
V_{S}	Supply Voltage		60	V
VIN, $\mathrm{V}_{\text {EN }}$	Input and Enable Voltage Range		-0.3 to +7	V
$\mathrm{V}_{\text {SENSE }}$	DC Sensing Voltage Range		-1 to +4	V
$\mathrm{V}_{\text {BOOT }}$	Bootstrap Peak Voltage		$\mathrm{V}_{\mathrm{S}}+10$	V
$I_{\text {S(peak }}$	Pulsed Supply Current (for each V_{S} pin), internally limited by the overcurrent protection	tPULSE $<1 \mathrm{~ms}$	3.55	A
Is	DC Supply Current (for each V_{S} pin)		1.4	A
$\mathrm{V}_{\text {OD }}$	Differential Voltage Between $\mathrm{V}_{\mathrm{SA}}, \mathrm{OUT1}_{\mathrm{A}}$, OUT2 $_{\mathrm{A}}$, SENSE $_{\mathrm{A}}$ and $\mathrm{V}_{\mathrm{S}} \mathrm{B}$, OUT1 $_{\mathrm{B}}$, OUT2 $_{\mathrm{B}}$, SENSE $_{\mathrm{B}}$		60	V
$\mathrm{T}_{\text {stg }}, \mathrm{Top}$	Storage and Operating Temperature Range		-40 to 150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	MIN	MAX	Unit
V_{S}	Supply Voltage	12	52	V
$V_{O D}$	Differential Voltage Between V_{S}, OUT $_{\mathrm{A}}$, OUT2 $_{\mathrm{A}}$, SENSE $_{\mathrm{A}}$ and V_{S}, OUT1 $_{\mathrm{B}}$, OUT2 $_{\mathrm{B}}$, SENSE $_{\mathrm{B}}$		52	V
$\mathrm{V}_{\text {SENSE }}$	Sensing voltage (pulsed tw<trr) (DC)	$\begin{aligned} & -6 \\ & -1 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\text {ref }}$	$\mathrm{V}_{\text {ref }}$ Operating Voltage	-0.1	5	V
lout	DC Output Current		1.4	A
T_{j}	Operating Junction Temperature	-25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{\text {sw }}$	Switching Frequency		100	kHz

PIN CONNECTION(Top View)

PowerDIP20/SO20

PowerSO20

PIN DESCRIPTION

Name	PowerSO20	PowerDIP20/ SO20	Function
$\mathrm{V}_{\text {SA }}$	2	17	Supply Voltage of the Bridge A.
$V_{\text {SB }}$	19	14	Supply Voltage of the Bridge B. This pin must be connected to $\mathrm{V}_{\text {SA }}$.
OUT1 $_{\mathrm{A}}$ OUT2A	$\begin{aligned} & \hline 9 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 4 \\ 18 \end{gathered}$	Bridge A outputs.
OUT1B OUT2B	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{gathered} \hline 7 \\ 13 \end{gathered}$	Bridge B outputs.
$\mathrm{SENSE}_{\mathrm{A}}$	8	3	Sense resistor for the bridge A
SENSE $_{\text {B }}$	13	8	Sense resistor for the bridge B
GND	1,10,11,20	5, 6,15,16	Common ground terminals. In Powerdip and SO packages, these pins are also used for heat dissipation toward the PCB.
$E N_{\text {A }}$	5	20	Enable of the Bridge A. A LOW logic level applied to this pin switches off all the power DMOSs of the related bridge. The Bridge A over current protection open drain is internally connected to this pin.
$E N_{B}$	16	11	Enable of the Bridge B. A LOW logic level applied to this pin switches off all the power DMOSs of the related bridge. The Bridge B over current protection open drain is internally connected to this pin.
$\begin{aligned} & \mathrm{IN} 1_{\mathrm{A}} \\ & \mathrm{IN} 2_{\mathrm{A}} \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	Logic inputs of the Bridge B. Provided the ENA signal is HIGH, a HIGH logic level applied to any of these pins switches on the related high side power DMOS, while a logic LOW switches on the related low side power DMOS .
$\begin{aligned} & \hline \mathrm{IN} 1_{\mathrm{B}} \\ & \mathrm{IN} 2_{\mathrm{B}} \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 9 \\ 10 \end{gathered}$	Logic inputs of the Bridge B. Provided the ENB signal is HIGH, a HIGH logic level applied to any of these pins switches on the related high side power DMOS, while a logic LOW switches on the related low side power DMOS .
V_{CP}	4	19	Bootstrap Oscillator. Oscillator output for the external charge pump.
$\mathrm{V}_{\text {BOOT }}$	17	12	Supply voltage to overdrive the upper DMOSs.

THERMAL DATA

Symbol	Description	PowerDIP20	SO20	PowerSO20	Unit
$R_{\text {th-j-pins }}$	MaximumThermal Resistance Junction-Pins	13	15	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th-j-case }}$	Maximum Thermal Resistance Junction-Case	-	-	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th-j-amb1 }}$	MaximumThermal Resistance Junction-Ambient ${ }^{(1)}$	41	51	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th-j-amb1 }}$	Maximum Thermal Resistance Junction-Ambient ${ }^{(2)}$	-	-	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th-j-amb1 }}$	MaximumThermal Resistance Junction-Ambient ${ }^{(3)}$	-	-	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th- }- \text {-amb2 }}$	Maximum Thermal Resistance Junction-Ambient ${ }^{(4)}$	57	78	63	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Mounted on a multilayer FR4 PCB with a dissipating copper surface on the bottom side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$).
(2) Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$).
(3) Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$), 16 via holes and a ground layer.
(4) Mounted on a multiplayer PCB without any heatsinking surface on the board.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=48 \mathrm{~V}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{S}	Supply Voltage		8		52	V
I_{S}	Quiescent Supply Current	All Bridges OFF; $-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{j}}<125^{\circ} \mathrm{C}$		5.5	10	mA
$\mathrm{~T}_{\mathrm{j}}$	Thermal Shutdown Temperature		150			${ }^{\circ} \mathrm{C}$

Output DMOS Transistors

IdSs	Leakage Current	$\mathrm{V}_{\mathrm{S}}=52 \mathrm{~V}$		1	mA
R DS(ON)	High-side + Low-side Switch ON Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1.47	1.69	Ω
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	2.35	2.7	Ω

Source Drain Diodes

V_{SD}	Forward ON Voltage	$\mathrm{ISD}_{\mathrm{SD}}=1.4 \mathrm{~A}, \mathrm{EN}=$ LOW			1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{f}}=1.4 \mathrm{~A}$		300		ns
t_{fr}	Forward Recovery Time			200		ns

Switching Rates

$t_{\text {d (on) }}$ EN	Enable to out turn ON delay time ${ }^{(5)}$	$\mathrm{LOAD}=1.4 \mathrm{~A}$		250		ns
$t_{\text {D(on) }{ }^{\text {N }}}$	Input to out turn ON delay time ${ }^{(5)}$			600		ns
ton	Output rise time ${ }^{(5)}$		20	105	300	ns
$t_{\text {d(off) }} \mathrm{EN}$	Enable to out turn OFF delay time ${ }^{(5)}$			450		ns
$\mathrm{t}_{\mathrm{D} \text { (off) }{ }^{\text {IN }}}$	Input to out turn OFF delay time ${ }^{(5)}$			500		ns
toff	Output fall time ${ }^{(5)}$		20	78	300	ns
t_{dt}	Dead time protection			1		$\mu \mathrm{s}$
${ }_{\text {f }}$	Charge pump frequency			0.75	1	MHz

UVLO comp

$\mathrm{V}_{\text {th(ON) }}$	Turn ON threshold		6.6	7	7.4	V
$\mathrm{~V}_{\text {th(OFF) }}$	Turn OFF threshold		5.6	6	6.4	V

Logic Input

$\mathrm{V}_{\text {INL }}$	Low level logic input voltage		-0.3		0.8	V
$\mathrm{~V}_{\mathrm{INH}}$	High level logic input voltage		2		7	V
$\mathrm{I}_{\mathrm{INH}}$	High level logic input current	$\mathrm{V}_{\text {IN, EN }}=5 \mathrm{~V}$			70	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{INL}}$	Low level logic input current	$\mathrm{V}_{\text {IN, EN }}=$ GND			-10	$\mu \mathrm{~A}$

Over Current Protection

IS OVER	Input supply over current protection threshold		2	2.8	3.55	A
$\mathrm{~V}_{\text {DIAG }}$	Open drain low level output voltage	$\mathrm{I}=4 \mathrm{~mA}$			0.4	V

(5) Resistive load used. See Fig. 1.

Figure 1. Switching rates definition

CIRCUIT DESCRIPTION

The L6225 is a dual full bridge IC designed to drive DC or stepper motors and other inductive loads. Each bridge has 4 power DMOS transistors with a typical $\mathrm{BS}(\mathrm{ON})$ of 0.3 Ohm . Any of the 4 half bridges can be controlled independently by means of the 4 TTL/CMOS compatible inputs $\operatorname{IN} 14, I N 2_{A}, I N 1_{B}, I_{2} 2_{B}$, and 2 enable ENA, ENB .
External connections are provided so that sensing resistor can be added for constant current chopping application. A non dissipative current sensing on the supply rails of the high side power DMOSs of each bridge, an internal reference and an internal open drain, with a pull down capability of 4 mA (typical value), will pull to GND the ENABLE pin of the bridge under fault conditions, turning OFF all the four PowerDMOSs. This ensures a protection against short circuit to GND and between two phases of each of the two independent full bridges. By using an external R-C on the EN pins, the off time before recovering normal operation conditions after a fault can be easily programmed, by means of the accurate threshold of the logic inputs. Note that protection against short to the supply rail is typically provided by the external current control circuitry. The trip point of this protection is set at 2.8A (typ value).

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			3.6			0.142
a1	0.1		0.3	0.004		0.012
a2			3.3			0.130
a3	0		0.1	0.000		0.004
b	0.4		0.53	0.016		0.021
c	0.23		0.32	0.009		0.013
D (1)	15.8		16	0.622		0.630
D1	9.4		9.8	0.370		0.386
E	13.9		14.5	0.547		0.570
e		1.27			0.050	
e3		11.43			0.450	
E1 (1)	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
G	0		0.1	0.000		0.004
H	15.5		15.9	0.610		0.626
h			1.1			0.043
L	0.8		1.1	0.031		0.043
N	10° (max.)					
S	8° (max.)					
T		10			0.394	

1) "D and F" do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed $0.15 \mathrm{~mm}(0.006$ ") - Critical dimensions: "E", "G" and "a3"

PSO20MEC

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			24.80			0.976
E		8.80			0.346	
e		2.54			0.100	
e3		22.86			0.900	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.1		0.3	0.004		0.012
B	0.33		0.51	0.013		0.020
C	0.23		0.32	0.009		0.013
D	12.6		13	0.496		0.512
E	7.4		7.6	0.291		0.299
e		1.27			0.050	
H	10		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
K		$0 \circ$ (min.) $8^{\circ}(m a x)$.				

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

