LC7265
 Received Frequency Display for Radio Receivers

Features

－Displays received frequency of each band of FM，MW，LW （LED static display）．
－Counts local oscillation frequency and displays received frequency．
－Number of display digits ：FM－5 digits，MW－4 digits，LW－3 digits．
－Covers intermediate frequencies shown below．

$$
\begin{array}{ll}
\text { FM : } & +10.700,+10.725,+10.750,+10.675 \mathrm{MHz} \\
& -10.700,-10.725,-10.675,-10.650 \mathrm{MHz} \\
\text { MW, LW : } & +450 \mathrm{kHz}: 10 \mathrm{kHz} \text { step display } \\
& +450 \mathrm{kHz}: 1 \mathrm{kHz} \text { step display } \\
& +455 \mathrm{kHz}: 1 \mathrm{kHz} \text { step display } \\
& +469 \mathrm{kHz}: 1 \mathrm{kHz} \text { step display }
\end{array}
$$

－Contains blanking circuit to turn off display．
－Contains hold circuit to hold display contents．
－Uses crystal resonator having 7．2 MHz reference frequency．
－Uses LB3500（ $\div 8$ prescaler）jointly at the time of FM reception．
－Supply voltage $\mathrm{V}_{\mathrm{DD}}: 4.5 \mathrm{~V}$ to 10 V

Package Dimensions

unit ：mm
3025B－DIP42S
［LC7265］

SANYO ：DIP42S

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {DD }}$ max		－0．3 to＋11	V
Input voltage	V_{IN}	All input pins	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	X ${ }_{\text {OUT }}$ ，$\overline{\mathrm{HLD}}, \overline{50 \mathrm{~Hz}}$ ，output：off	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{\mathrm{O}} 2$	Output pins other than $\mathrm{V}_{\mathrm{O}} 1$	0 to 15	V
Allowable power dissipation	Pd max	$\mathrm{Ta} \leqq 65{ }^{\circ} \mathrm{C}$	550	mW
Allowable power dissipation of segment outputs	Pd（seg） 1	$\overline{\mathrm{MHz}}, \overline{\mathrm{b} \& \mathrm{c}}, \overline{\mathrm{b} \& \mathrm{e}}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.5 V ， $\mathrm{I} \mathrm{OL}=33 \mathrm{~mA}$	－ 30	mW
	Pd（seg） 2	Other outputs， $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.5 V ， $\mathrm{l}_{\mathrm{OL}}=16.5 \mathrm{~mA}$	15	mW
	Pd（seg） 3	$\begin{aligned} & \overline{\mathrm{MHz}}, \overline{\mathrm{~b} \& \mathrm{c}}, \overline{\mathrm{~b} \& \mathrm{e}}, \mathrm{~V}_{\mathrm{DD}}=6.0 \text { to } 10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=36 \mathrm{~mA} \end{aligned}$	25	mW
	Pd（seg） 4	Other outputs， $\mathrm{V}_{\mathrm{DD}}=6.0$ to 10 V ， $\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}$	12	mW
Operating temperature	Topr		-30 to +65	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

LC7265

Allowable Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	$V_{\text {DD }}$		4.5		10	V
Input high-level voltage	$\mathrm{V}_{\text {IH }} 1$	$\overline{\mathrm{A}} / \mathrm{F}, \overline{\mathrm{BLK}}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\text {DD }}$	V
	$\mathrm{V}_{1 \mathrm{H}^{2}}$	FIF1, FIF2, FIF3, AIF1, AIF2	$0.9 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\text {DD }}$	V
Input low-level voltage	$\mathrm{V}_{\text {IL }} 1$	$\overline{\mathrm{A}} / \mathrm{F}, \overline{\mathrm{BLK}}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL}} 2$	FIF1, FIF2, FIF3, AIF1, AIF2	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
Input frequency	$\mathrm{f}_{\mathrm{I}} 1$	FMI, sine wave, capacitive coupling, $\mathrm{V}_{\mathrm{IN}^{1}}=0.7 \mathrm{Vp}$-p	1		18	MHz
	$\mathrm{f}_{1}{ }^{2}$	AMI, sine wave, capacitive coupling, $\mathrm{V}_{\mathrm{IN}} 2=0.5 \mathrm{Vp}-\mathrm{p}^{*}$	0.5		3	MHz
	$\mathrm{f}_{1 \mathrm{~N}^{3}}$	XIN	0.2		7.5	MHz
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	FMI, sine wave, capacitive coupling, $\mathrm{f}_{\mathrm{IN}} 1=1$ to 18 MHz	0.7		$0.9 \mathrm{~V}_{\mathrm{DD}}$	Vp-p
	$\mathrm{V}_{1 \mathrm{~N}^{2}}$	AMI, sine wave, capacitive coupling, $\mathrm{f}_{\mathrm{IN}}{ }^{2}=0.5$ to 3 MHz	0.5*		0.9V $\mathrm{V}_{\text {DD }}$	Vp-p
	$\mathrm{V}_{1 \times} 3$	X_{IN}, sine wave, capacitive coupling, $\mathrm{f}_{\mathrm{IN}} 3=0.2 \text { to } 7.5 \mathrm{MHz}$	1.0		0.9V $\mathrm{V}_{\text {DD }}$	Vp-p
Segment current	Iseg1	$\overline{\mathrm{MHz}}$, $\overline{\mathrm{b} \& \mathrm{e}}, \overline{\mathrm{b} \& \mathrm{c}}$	0		30	mA
	Iseg2	Other outputs	0		15	mA

*: For $\mathrm{f}_{\mathrm{IN}} 2=0.5 \mathrm{MHz}$ to 0.9 MHz and $\mathrm{V}_{\mathrm{DD}}=8$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} 2 \mathrm{~min}=1.0 \mathrm{Vp}-\mathrm{p}$ applies.
Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high-level current	$\mathrm{I}_{1 \mathrm{H}} 1$	FIF1, FIF2, FIF3, AIF1, AIF2 $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	0		10	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{H} 2}$	$\overline{\text { BLK }} \quad \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	0		2	$\mu \mathrm{A}$
Input low-level current	$\mathrm{I}_{\text {IL }} 1$	FIF1, FIF2, FIF3, AIF1, AIF2 $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	0		10	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 2$	$\overline{\mathrm{BLK}} \quad \mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS}}$	0		2	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 3$	$\overline{\mathrm{A}} / \mathrm{F} \quad \mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS}}$	20		500	$\mu \mathrm{A}$
Input floating voltage	$\mathrm{V}_{\text {IF }}$	$\overline{\mathrm{A}} / \mathrm{F} \quad \mathrm{V}_{1}=$ open	0.8V VD		V_{DD}	V
Input/output high-level leakage current	IOFF	$\overline{\text { HLD }}$, output off, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	0		2	$\mu \mathrm{A}$
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	$\overline{\mathrm{HLD}}$, output on, $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	0		1	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\begin{aligned} & \overline{\mathrm{b} \& \mathrm{e}}, \overline{\mathrm{~b} \& \mathrm{c}}, \overline{\mathrm{MHz}} \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 10 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OL}}=30 \mathrm{~mA} \end{aligned}$	0		0.7	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	Segments other than above $\mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$	0		0.7	V
	$\mathrm{V}_{\mathrm{OL}} 4$	$\overline{50 \mathrm{~Hz}}, \mathrm{l} \mathrm{O}=0.2 \mathrm{~mA}$	0		1.0	V
Input high-level threshold voltage	Vth	$\overline{\text { HLD }}$	$0.4 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\text {DD }}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V
Output off leakage current	loff2	All segments output pins, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$, output off	0		10	$\mu \mathrm{A}$
Current drain	$I_{\text {DD }}$	FM mode, $\bar{A} / F=$ open or $V_{D D}, f_{I N} 1=18 \mathrm{MHz}$, $0.7 \mathrm{Vp}-\mathrm{p}$ or (AM mode, $\overline{\mathrm{A}} / \mathrm{F}=\mathrm{V}_{\mathrm{SS}}, \mathrm{f}_{\mathrm{IN}} 2=$ $3 \mathrm{MHz}, 0.5 \mathrm{Vp}-\mathrm{p}) \mathrm{f}_{\mathrm{IN}} 3=7.2 \mathrm{MHz}, 1 \mathrm{Vp}-\mathrm{p}$ FIF1, FIF2, FIF3 $=V_{D D}$ AIF1, AIF2 $=\mathrm{V}_{\mathrm{DD}}$ $\overline{H L D}, \overline{B L K}=V_{D D}$ other pins open	0		18	mA

Pin Assignment

LC7265

Equivalent Circuit Block Diagram

1. Display

1-1 Display font

$$
1 \underset{1}{1} \square 1 \leq G
$$

1-2 Lighting system

- Static lighting

1-3 Display range (High-order 1 digit : zero blanking)

- FM
: 00.00 MHz to $199.95 \mathrm{MHz} \quad 50 \mathrm{kHz}$ step
- MW, LW : 000 kHz to $1999 \mathrm{kHz} \quad 10 \mathrm{kHz}$ or 1 kHz step

2. Pin Description

2-1 • $\overline{\mathrm{a}}$ to $\overline{\mathrm{g}}, \overline{\mathrm{b} \& \mathrm{c}}, \overline{\mathrm{b} \& \mathrm{e}}, \overline{\mathrm{MHz}}, \overline{\mathrm{kHz}}:$ LED

2-2 $\cdot \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$: Power supply pins
2-3 $\cdot \mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$: Crystal resonator or input amp pin

2-4 • FIF1, FIF2, FIF3 : FM IF select pins

FIF1	0	0	0	0	1	1	1	1
FIF2	0	0	1	1	0	0	1	1
FIF3	0	1	0	1	0	1	0	1
IF (MHz)	+10.700	+10.725	+10.675	+10.750	-10.700	-10.725	-10.675	-10.650

2-5 • AIF1, AIF2 : AM IF select pins

AIF1	0	0	1	1
AIF2	0	1	0	1
IF (kHz)	$+450(2)$	$+450(1)$	+455	+469

1 : High level (V_{DD})
0 : Low level (V_{SS})
(Note) $450 \mathrm{kHz}(1): 10 \mathrm{kHz}$ step display, others : 1 kHz step display
2-6 • $\overline{\text { HLD }}$: Display contents hold pin
Normally, this pin is set at high level. To hold display contents, this pin is set at low level. Connecting time constant circuit to this pin makes it possible to hold display contents for a certain period of time at the time of FM/MW, LW band selection.

2-7 • $\overline{\text { BLK }}$: Display blanking pin

2-8 • FMI, AMI : Local oscillation signal input pins
FMI — For FM $: 0.7 \mathrm{Vp}-\mathrm{p}$ input sensitivity
AMI - For MW, LW : 1.0 Vp -p input sensitivity $\left(\mathrm{V}_{\mathrm{DD}}=8\right.$ to $10 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=0.5$ to 0.9 MHz$)$
$0.5 \mathrm{Vp}-\mathrm{p}$ input sensitivity (other than above)

2-9 • $\overline{\mathrm{A}} / \mathrm{F}: \mathrm{FM} / \mathrm{MW}, \mathrm{LW}$ select pin
FM - Pin open or high level
MW, LW - Low level
$2-10 \cdot \overline{50 \mathrm{~Hz}}: 50 \mathrm{~Hz}$ time base output pin

LC7265

Hold time - time constant connected to HLD pin

Time constant connected to $\overline{\mathrm{HLD}} \mathrm{pin},(\mathrm{t}=\mathrm{CR})-\mathrm{ms}$

Vp-p - $f_{\text {IN }} 1$

$V_{D D}-f_{I N} 1$

Time constant connected to BLK pin - V_{DD} rise time

$\mathrm{I}_{\mathrm{DD}}-\mathrm{Ta}$

Vp-p - fin^{2}

LC7265

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
\square Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

