
查询LMX5080供应商

PRELIMINARY April 1999 Communications

LMX5080 PLLatinum[™] 2.7 GHz Low Power Dual Modulus Prescaler for RF Personal Communications

General Description

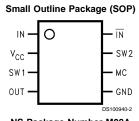
The LMX5080 integrated dual modulus prescaler, is designed to be used in a synthesized local oscillator for 2.5 GHz wireless transceivers. It is fabricated using National's 0.5µ ABiCV silicon BiCMOS process. The LMX5080 contains three dual modulus prescalers. Either a 128/130, 256/158 or a 512/514 prescaler can be selected for up to 2.7 Gz RF input frequencies. The prescaler inputs can be driven either differentially, or single ended with the use of a coupling capacitor on one of the inputs to ground. The LMX5080 CMOS output is optimized to generate very stable, low switching noise output signals. The LMX5080 prescaler can be used in conjunction with a low frequency Phase Lock Loop to form a frequency synthesizer suitable for UHF transceivers. Supply voltage can range from 2.7V to 5.5V. The LMX5080 features low current consumption; typically 7.0 mA at 5V V_{cc}

The LMX5080 is available in a 8-pin Small Outline (SOP) surface mount plastic package.

Features

- 2.7V to 5.5V operation
- Low current consumption: 7 mA (typ) @ 5V
- -40°C to +85°C low noise CMOS output
- Selectable dual modulus prescaler 128/130 256/258
 - 512/514
- 8-pin small package outline (SOP)

Applications


- 2.5 GHz wireless communications systems (ISM)
- Direct Broadcast Satellite systems (DBS)
- Cable TV tuners (CATV)

MX5080 PLLatinum 2.7 GHz Low Power Dual Modulus Prescaler for RF Persona **Functional Block Diagram** IN SW2 V_{CC} Prescalar SW1 MC OUT GND PLLatinum™ is a trademark of National Semiconductor Corporation

www.national.com

.

NS Package Number M08A Order Number LMX5080M, LMX5080MX

Pin Descriptions

Pin	Pin	I/O	Description		
No.	Name				
1	IN	I	RF small signal prescaler input. Small signal input from the voltage controlled oscillator		
2	V _{cc}	_	Power Supply voltage input may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.		
3	SW1	I	Divide Ratio Control. CMOS logic input. Pin functionality is described in the Modulus Control Truth Table.		
4	OUT	0	Prescaler Output. CMOS level output for connection to low frequency PLL input.		
5	GND	—	Ground for analog and digital signals.		
6	MC	I	Modulus Control Input. High impedance CMOS logic input. Pin functionality is described in the Modulus Control Truth Table.		
7	SW2	I	Divide Ratio Control. High impedance CMOS logic input. Pin functionality is described in the Modulus Control Truth Table.		
8	ĪN	I	RF small signal prescaler complementary input. In single-ended mode, a bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. The IN and IN can be driven differentially when the bypass capacitor is omitted.		

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

			Value		
Parameter	Symbol	Min	Тур	Max	Units
Power Supply Voltage	V_{cc}	-0.3		6.5	V
Voltage on any pin with GND=0V	V _i	-0.3	Vc	_c +0.3	V
Storage Temperature Range	Ts	-65		+1.50	°C
Lead Temp. (solder 4 sec)	TL			+2.60	°C

Recommended Operating Conditions (Note 1)

			Value		
Parameter	Symbol	Min	Тур	Max	Units
Power Supply Voltage	V _{cc}	2.7		5.5	V
Operating Temperature	T _A	-40		+85	°C

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. Electrical Characteristics document specific minimum and/or maximum performance values at specified test conditions and are guaranteed. Typ or Typical values are for informational purposes only which are based on design parameters or device characterization and are not guaranteed.

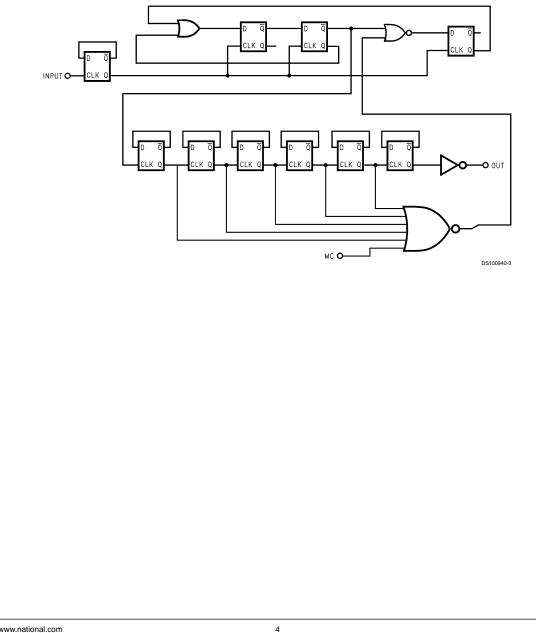
Note 2: This device is a high performance RF integrated circuit and is ESD sensitive. Handling and assembly of this device should only be done on ESD-free workstations.

Electrical Characteristics

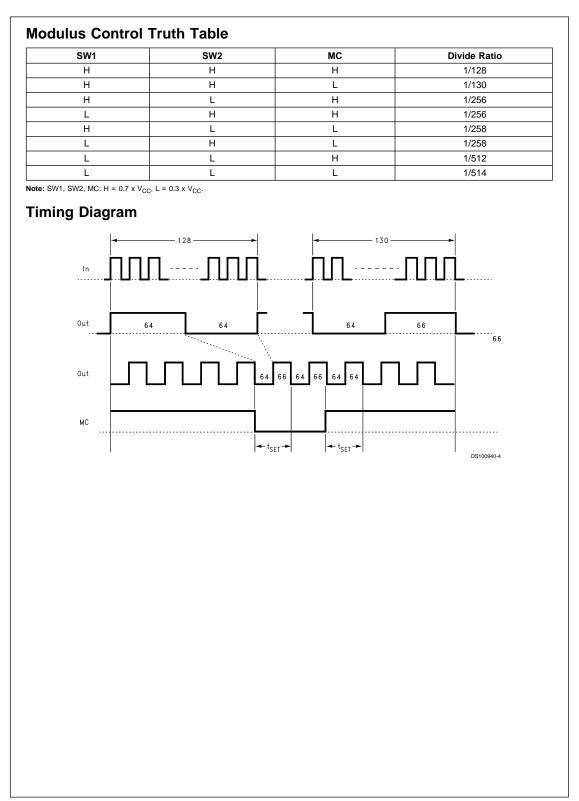
(V_{CC} = 5.0V, $T_A = -40^{\circ}C$ to +85°C except as specified) (Note 1)

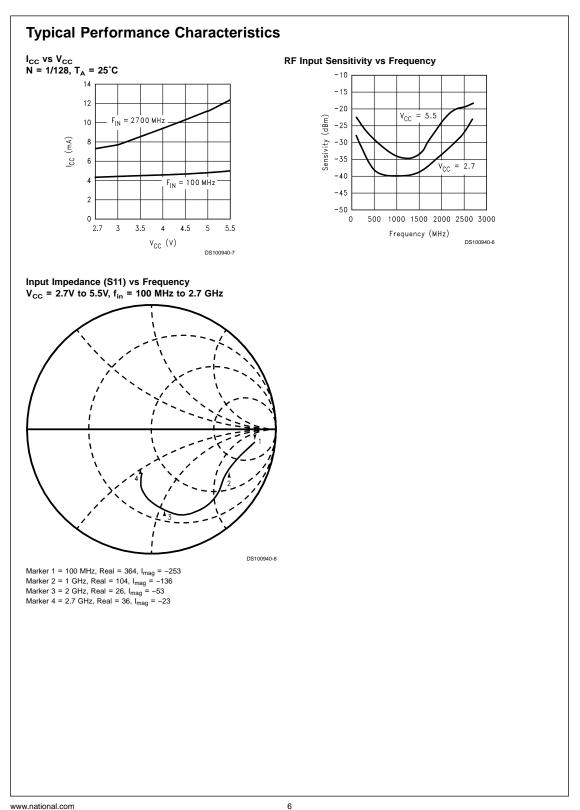
Symbol	Parameter		Value			
	Parameter	Condition	Min	Тур	Max	Units
I _{cc}	Power Supply Current			7		mA
V _{OH}	Output Amplitude	$Z_{L} = 100 \text{ k}\Omega //10 \text{ pF}$	0.9 x V _{CC}			V
V _{OL}		$V_{\rm CC}$ = 2.7V to 5.5V			0.1 x V _{CC}	V
f _{in}	Input Frequency	AC coupled. V_{CC} = 2.7V to 5.5V	100		2700	MHz
Pf _{in}	Operational Input Signal Amplitude	V _{CC} = 2.7V to 5.5V	-15		+4	dBm
f _{out}	Output Frequency		0.1		25	MHz
V _{IH}	High-level Input Voltage (MC, SW1, SW2)		0.7 x V _{CC}			V
V _{IL}	Low-level Input Voltage (MC, SW1, SW2)				0.3 x V _{CC}	V
I _{IH}	High-level Input Current (MC, SW1, SW2)	$V_{IH} = 0.7 \times V_{CC}$		±1		uA
I	Low-level Input Current (MC, SW1, SW2)	$V_{IL} = 0.3 \times V_{CC}$		±1		uA
t _{Set}	Modulus Control Set-up time. (Note 3)	SW1=H, SW2=H f _{in} = 2.7 GHz		15	20	ns
IM	Input/Output Intermodulation (Note 4)	-10 dBm / 50Ω AC coupled signal delivered to input. V_{CC} =2.7V to 5.5V. MC=0, MC=1. Fin=2.3 GHz to 2.5 GHz.		-35	-30	dBc

Note 3: See Timing Diagram.

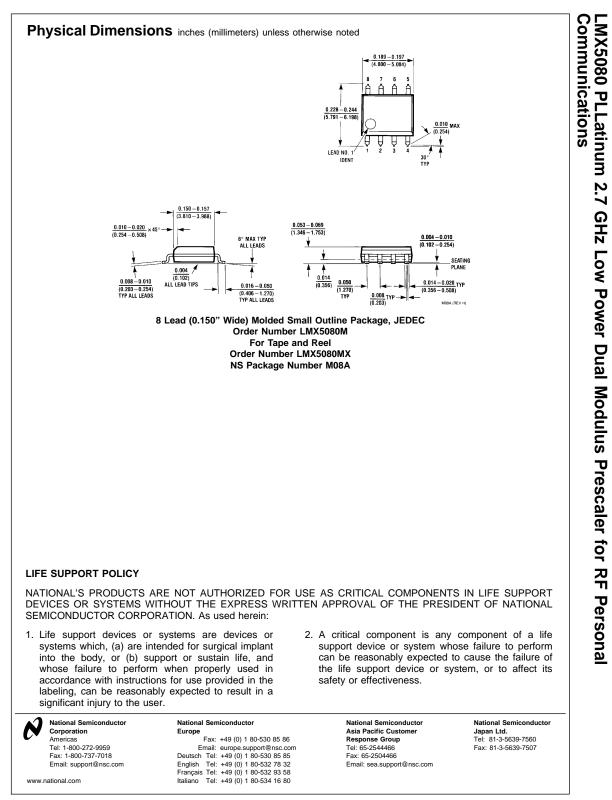

Note 4: Guaranteed by design and characterization, not tested. Output frequency measured at input.

Functional Description


The basic phase-lock-loop (PLL) configuration using an external prescaler consists of a high-stability crystal reference oscillator, a prescaler such as the National Semiconductor LMX5080, a low frequency synthesizer, a voltage controlled oscillator (VCO), and a loop filter. The frequency synthesizer typically includes programmable reference [R] and feedback [N] frequency dividers, a phase detector, as well as a charge pump. The MC signal is fed back to the prescaler from either


the low frequency synthesizer, or a controller to set the prescaler divide ratio to N or N+2. The prescaler output frequency is established by dividing the VCO signal down via the prescaler modulus. The RF inputs to the prescalar consist of the Fin and /Fin input pins which are complementary inputs to a differential pair amplifier. This configuration can operate to 2 GHz with an input sensitivity of -15 dBm.

Block Diagram



www.national.com

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.