

MB15A02 ASSP

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 1.1GHZ PRESCALER

The Fujitsu MB15A02, utilizing Bi-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function.

The MB15A02 contains a 1.1GHz two modulus prescaler that can select either a 64/65 or 128/129 divide ratio, control signal generator, 16-bit shift register, 15-bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase reverse function, charge pump, crystal oscillator, 19-bit shift register, 18-bit latch, and programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter). It operates supply voltage of 5V typ, and achieves very low supply current of 7mA typ, realized through the use of Fujitsu Advanced Process Technology.

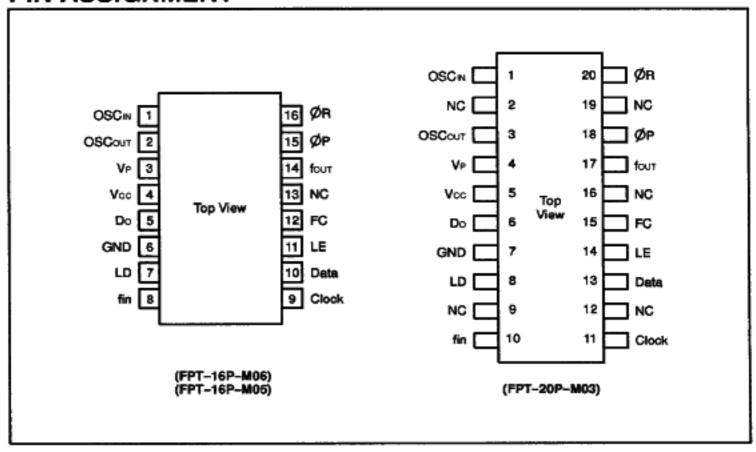
- High operating frequency: fin MAX=1.1GHz (Pin MIN=-10dBm)
- Pulse swallow function: 64/65 or 128/129
- Low supply current: loc=7mA typ.
- Serial input 18-bit programmable divider consisting of:
 - Binary 7-bit swallow counter: 0 to 127
 - Binary 11-bit programmable counter: 16 to 2,047
- Serial input 15-bit programmable reference divider consisting of:
 - Binary 14-bit programmable reference counter: 6 to 16,383
 - 1-bit switch counter (SW) sets divide ratio of prescaler
- · Two types of phase detector output
 - On-chip charge pump (Bipolar type)
 - Output for external charge pump
- Wide operating temperature: -40°C to +85°C
- 16-pin Plastic SOP Package
 16-pin Plastic SOC
 - 16-pin and 20-pin Plastic SSOP Packages

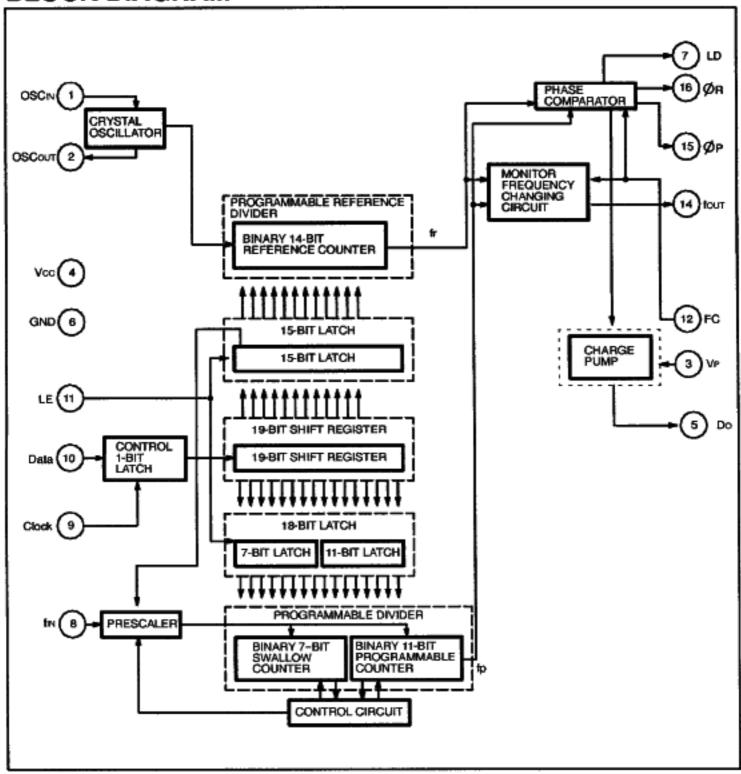
ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Rating	Unit	Remark
D D	Vcc	-0.5 to +7.0	٧	Ī
Power Supply Voltage	Vρ	V∞ to 8.0	V	
Output Voltage	Vout	-0.5 to V∞ +0.5	٧	ØP pin
Open-drain Voltage	Voor	-0.5 to 6.0	٧	
Output Current	Іост	±10	mA	
Storage Temperature	Tsro	-55 to +125	°C	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE FPT-16P-M05


PLASTIC PACKAGE FPT-16P-M06


PLASTIC PACKAGE FPT-20P-M03

This device costains discutify to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to evoks application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN ASSIGNMENT

BLOCK DIAGRAM

Note: Pin numbers are based on SOP/SSOP 16-pin packages.

PIN DESCRIPTION

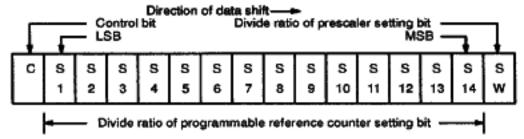
Pin	Pin No.			
SOP-16P SSOP-16P	SSOP-20P	Pin Name	М	Description
1 2	1 3	OSCout OSCout	0	Oscillator input. Oscillator output. A crystal is placed between OSC:N and OSC:DUT.
3	4	VP	-	Power supply pin for charge pump. When the internal charge pump is not used, V _P pin needs to be connected to V _{CC} .
4	5	Vcc	-	Power supply pin.
5	6	Do	0	Charge pump output.
6	7	GND	1	Ground.
7	8	5	0	Phase comparator output. Normally this pin outputs high level. When there is a phase error between fr and fp, LD becomes low for the period corresponding to the error.
8	10	fin	-	Prescaler input. The connection with an external VCO should be AC connection.
9	11	Clock	-	Clock input for 19-bit shift register and 16-bit shift register. On rising edge of the clock shifts one bit of data into shift register.
10	13	Deta	1	Binary serial data input. The last bit of data is a control bit. When this bit is high level, the data stored in shift register is transferred to 15-bit latch. When this bit is low level and LE is high level, the data is transferred to 18-bit latch.
11	14	LE	ı	Load enable input (with internal pull up resistor). When LE is high, the data stored in shift register is transferred into latch according to the control bit.
12	15	FC	1	Phse select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of phase comparator is reversed. FC input signal is also used to select fout pin (test pin) output, fr or fp.
13	2,9,12,16,19	NC	-	No connection
14	17	four	0	Minitor pin of phase comparator input. fout pin outputs either programmable reference divider output (fr) or programmable divider output (fp) according to FC pin input level. FC=H: It is the same as fr output level. FC=L: It is the same as to output level.
15	18	ØР	0	Outputs for external charge pump. The characteristics are reversed according to FC input. ØP pin is N-channel open drain output.
16	20	ØR	0	Outputs for external charge pump. ØR pin is CMOS output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18-bit programmable divider, respectively.

Binary serial data is input to Data pin.


On rising edge of clock shifts one bit of serial data into the internal shift register and when load enable pin is high level or open, stored data is transferred into latch according to the control bit.

Control data "H" data is transferred into 15-bit latch.

Control data "L" data is transferred into 18-bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16-bit shift register, 15-bit latch and 14-bit programmable reference counter. Serial 16-bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

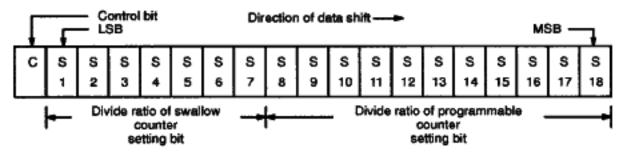
Divide Ratio R	S 14	S 13	S 12	ø 1	S 10	Ø 99	တဆ	S 7	Ø 6	Ø 5	Ø 4	တက	60 N	8 1
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 6 is prohibited.

Divide ratio: 6 to 16,383

SW: This bit selects divide ratio of prescaler.

SW=H:64/65 SW=L:128/129


S1 to S14: These bits select divide ratio of programmable reference divider.

C: Control bit (sets at high level). Start data input with MSB first.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19-bit shift register, 18-bit latch, 7-bit swallow counter and 11-bit programmable counter. Serial 19-bit data format is shown following page.

MB15A02

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	8	S 6	S 5	S 4	8	S	S 1
0	0	0	0	0	0	0	٥
1	0	0	0	0	0	0	1
•	•	٠	•	•	•	٠	•
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	0) 0)	8
16	0	0	0	0	0	0	1	٥	0	0	٥
17	0	0	0	0	٥	٥	1	0	٥	0	1
•	٠	•	•	•	٠	٠	٠	٠	٠	•	٠
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.

Divide ratio: 16 to 2,047

S1 to S7: Swallow counter divide ratio setting bit. (0 to 127) S8 to S18: Programmable counter divide ratio setting bit. C: Control bit (sets at low level).

Data input with MSB first.

PULSE SWALLOW FUNCTION

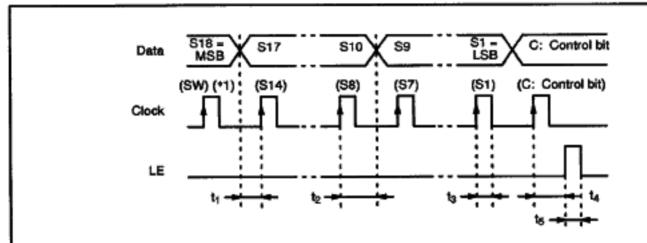
tvoo= [(PxN)+A] xfosc÷R

fvco: Output frequency of external voltage controlled oscillator (VCO)

N: Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)

A: Preset divide ratio of binary 7-bit swallow counter (0≤A≤127, A<N)</p>

fosc:Output frequency of the external reference frequency oscillator


R: Preset divide ratio of binary 14-bit programmable reference counter (6 to16,383)

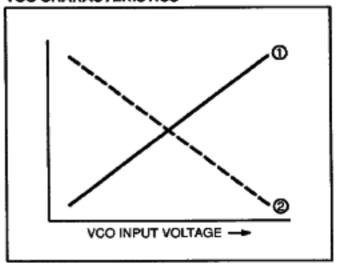
P: Preset modulus of external dual modulus prescaler (64 or 128)

Serial data input timing

t₁ (≥ 100ns): Data setup time
 t₂ (≥ 1000ns): Data hold time
 t₄ (≥ 100ns): LE setup time to the rising edge of last clock

t₃ (≥ 300ns) : Clock pulse width t₆ (≥ 800ns) : LE pulse width

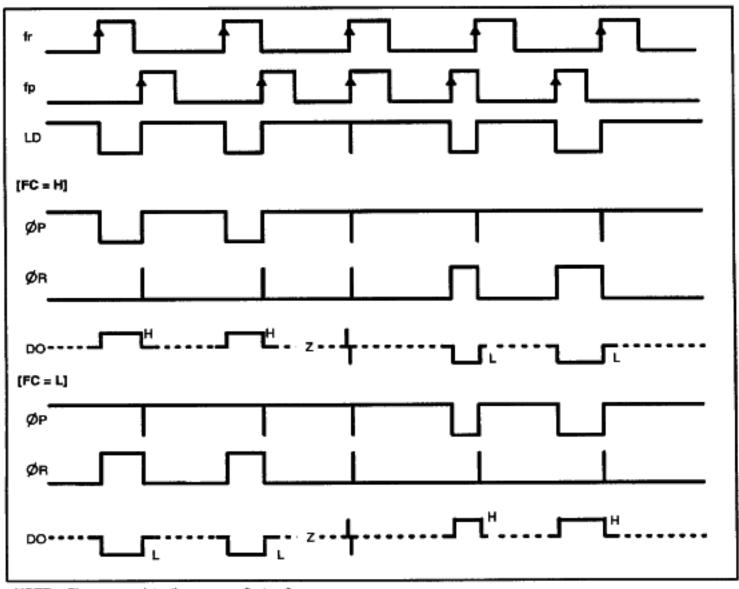
*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.


Note: One bit of data is shifted into the shift register on the rising edge of the clock.

PHASE CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (Do), phase comparator output level ($\not O$ R, $\not O$ P) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level. The relation between outputs (Do, $\not O$ R, $\not O$ P) and FC input level are shown below.

	F	C=H	or op	en	FC=L				
	Ю	ØR	ØР	fout	DO	ØR	ØР	fout	
fr>fp	н	٦	٦	(fr)	L	н	z	(fp)	
fr <fp< td=""><td>L</td><td>н</td><td>z</td><td>(fr)</td><td>н</td><td>L</td><td>L</td><td>(fp)</td></fp<>	L	н	z	(fr)	н	L	L	(fp)	
fr=fp	z	L	z	(fr)	z	L	z	(fp)	


Note: Z=(High impedance)

Depending upon VCO characteristics, FC pin should be set accordingly:

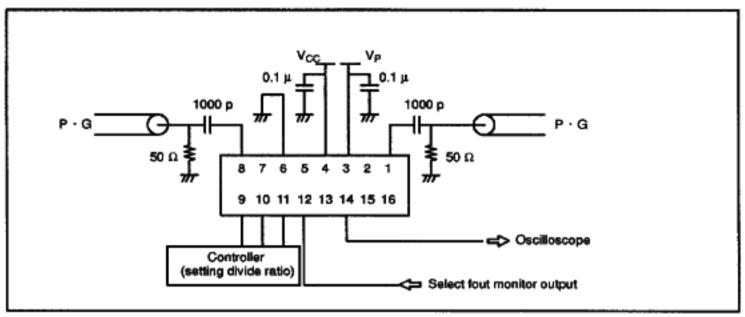
When VCO characteristics are like (1), FC should be set High or open circuit;

When VCO characteristics are like (2), FC should be set Low.

OUTPUT WAVEFORM

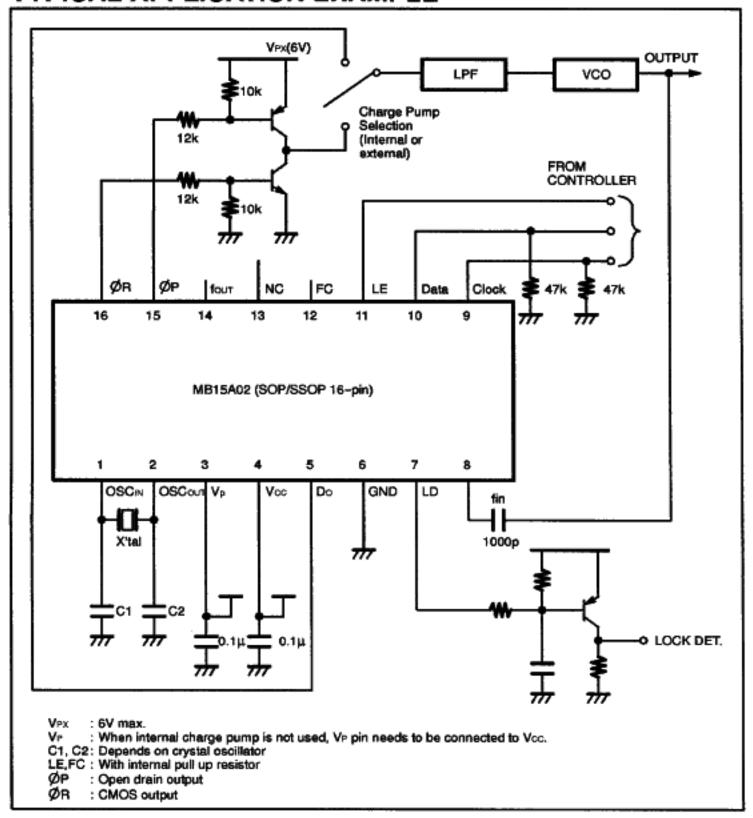
NOTE: Phase error detection range: -2π to $+2\pi$

RECOMMENDED OPERATING CONDITIONS


B	Combal		Unit			
Parameter	Symbol	Min	Тур	Max	O. III	
Power Supply Voltage	Voc	4.5	5.0	5.5	٧	
	VP	Vcc	-	6.0	v	
Input Voltage	Vı	GND	-	V cc	v	
Operating Temperature	Ta	-40	-	85	°C	

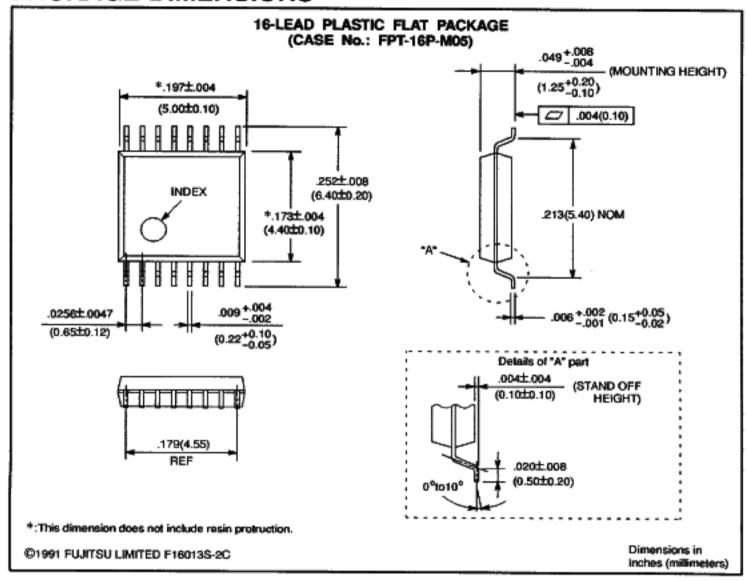
ELECTRICAL CHARACTERISTICS

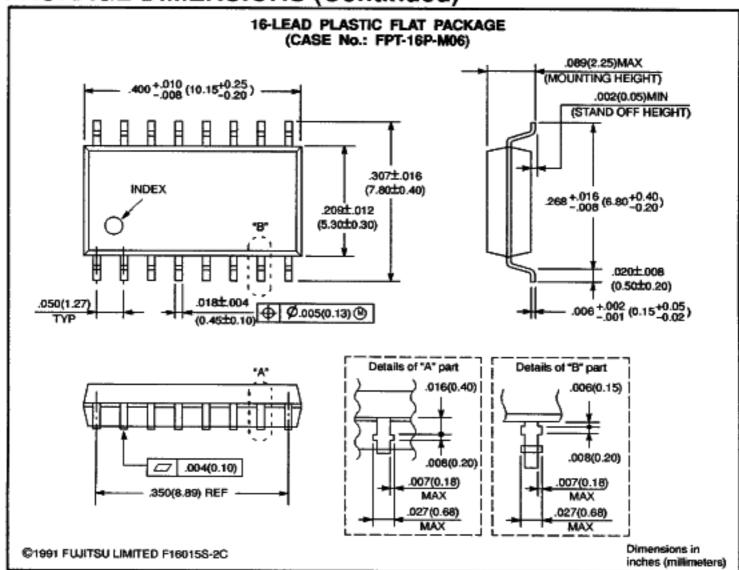
		C		Value		Unit	Condition
Parameter		Symbol	Min	Тур	Max	Unit	Contamon
Power Supply Current		loc	-	7.0	-	mA	*1
	fin	fin	10	-	1100	MHz	*2
Operating Frequency	OSCIN	fosc	-	12	20	MHz	
Input Sensitivity	fin	Pfin	-10	-	6	dBm	50Ω system
input densitivity	OSCIN	Vosc	0.5		-	VPP	
High-level Input Voltage	Clock,	VIH	Vccx0.7	-	-	٧	
Low-level input Voltage	Data, LE	V _{IL}	-	-	Vocx0.3	٧	
High-level Input Current	Data	I _{IH}	-	-	1.0	μА	
Low-level Input Current	Clock	կլ	-	1	-1.0	μА	
Input Current	OSCIN	losc	-	±50	-	μА	
input current	LE, FC	ILE	-	-60	-	μ Λ	
High-level Output Voltage	ØR, LD	V _{OH}	4.4	-	-	V	Vcc=5V, loн = ~1.0mA
Low-level Output Voltage	ØR, ØP, LD	VOL	-	-	0.4	٧	Vcc=5V, lo. = 1.0mA
High impedance Cutoff Current	Do, ØP	loff	-	-	1,1	μА	VP=Vcc to 6V VccP=GND to 6V
Output Current	ØR, LD	Іон	-1.0	-	_	mA	Vcc=5V
Cupul Curient	ØR, ØP, LD	loL	-	-	1.0	mA	V∞=5V


^{1:} fin=1.1GHz, OSC_{IN}=12MHz, Vcc=5V. In locked state.
2: AC coupling. Minimum operating frequency is measured when a capacitor 1000pF is connected.

TEST CIRCUIT (FOR MEASURING INPUT SENSITIVITY fin/OSCin)

Note: Pin numbers are based on SOP/SSOP 16-pin packages.


TYPICAL APPLICATION EXAMPLE


ORDERING INFORMATION

Part Number	Package
MB15A02PF	Plastic SOP, 16-pin FTP-16P-M06
MB15A02PFV1	Plastic SSOP, 16-pin FTP-16P-M05
MB15A02PFV2	Plastic SSOP, 20-pin FTP-20P-M03

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued)

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.

The Information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The Information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 1015 Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211, Japan
Tel: (044) 754-3753
FAX: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 FAX: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6–10 63303 Dreieich-Buchschlag, Germany Tel: (06103) 690–0 FAX: (06103) 690–122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 0718 Tel: 336-1600 FAX: 336-1609

I9503 © FUJITSU LIMITED Printed in Japan Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com