MB507
1.6GHz TWO MODULUS PRESCALER

1.6GHz TWO MODULUS PRESCALER
The Fujitsu MB507 is a 1.6GHz two modulus prescaler used with a frequency synthesizer to form a Phase Locked Loop (PLL). It will divide the input frequency by the modulus of 128/129 or 256/257 and has an output level of 1.6V peak to peak on ECL level.

FEATURES

• High Frequency Operation 1.6GHz max.

• Power Dissipation 90mW typ.

• Pulse Swallow Function

• Wide Operation Temperature -40°C to +85°C

• Stable Output Amplitude $V_{OUT} = 1.6V_{p-p}$

• Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC

• Package
 Standard 8-pin Dual-In-Line Package (Suffix: –P)
 Standard 8-pin Flat Package (Suffix: –PF)

ABSOLUTE MAXIMUM RATINGS (See Note)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>-0.5 to +7.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>-0.5 to V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{O}</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Copyright © 1995 by FUJITSU LIMITED and FUJITSU MICROELECTRONICS
Figure 1. MB507 Block Diagram

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>Input</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>DC Supply Voltage</td>
</tr>
<tr>
<td>3</td>
<td>SW</td>
<td>Divide Ratio Control Input Selecting Divide Ratio (See Divide Ratio Table)</td>
</tr>
<tr>
<td>4</td>
<td>OUT</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>MC</td>
<td>Modulus Control Input (See Divide Ratio Table)</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>8</td>
<td>IN</td>
<td>Complementary Input</td>
</tr>
</tbody>
</table>

Note: SW: H = VCC, L = open
MC: H = 2.0V to VCC, L = GND to 0.8V
RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>4.5 5.0 5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_O</td>
<td>1.2</td>
<td>mA</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>T_A</td>
<td>–40 +85</td>
<td>°C</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>C_L</td>
<td>12</td>
<td>pF</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td>I_{CC}</td>
<td></td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>Output Amplitude</td>
<td>V_O</td>
<td></td>
<td>1.0 1.6</td>
<td>V$_{p-p}$</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>f_{IN}</td>
<td>with input coupling capacitor 1000pF</td>
<td>100 1600</td>
<td>MHz</td>
</tr>
<tr>
<td>Input Signal Amplitude</td>
<td>P_{IN}</td>
<td></td>
<td>–4 10</td>
<td>dBm</td>
</tr>
<tr>
<td>High Level Input Voltage for MC Input</td>
<td>V_{IH}</td>
<td></td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Low Level Input Voltage for MC Input</td>
<td>V_{IL}</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High Level Input Voltage for SW Input</td>
<td>V_{IHS}^*</td>
<td>$V_{CC} -0.1$</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>Low Level Input Voltage for SW Input</td>
<td>V_{ILS}</td>
<td>Open</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High Level Input Current for MC Input</td>
<td>I_{IH}</td>
<td>$V_{IH} = 2.0V$</td>
<td>0.4</td>
<td>mA</td>
</tr>
<tr>
<td>Low Level Input Current for MC Input</td>
<td>I_{IL}</td>
<td>$V_{IL} = 0.8V$</td>
<td>–0.2</td>
<td>mA</td>
</tr>
<tr>
<td>Modulus Set-up Time MC to OUT</td>
<td>I_{SET}</td>
<td>1.6GHz Operation</td>
<td>18 28</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: *Design Guarantee*
Sampling scope input point
for input waveform

Sampling scope prober point
for output waveform

Note: When divide of 129 is selected, positive pulse is applied by one to 65.
The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.
Figure 3. Input Signal Amplitude vs. Input Frequency

![Graph showing input signal amplitude vs. input frequency.](image)

Figure 4. Typical Application Example

![Circuit diagram showing typical application.](image)

- $V_{CC} = 5.0\, V$
- $T_A = 25\, ^\circ C$
- Minimum input signal amplitude (mVp-p)
- Input frequency (MHz)

Data Clock LE
- 47K
- 47K
- 47K
- 1000pF

VCC
- 0.047µF
- 12K
- 10K
- 33K

V SX (Max. 8V)
- 1000pF
- 12K
- 10K

- X_1 : 12.8MHz X'tal
- V_{CC} : 5V ± 10%
- V_{SX} : 8V max.
- C_1, C_2 : depends on crystal oscillator

Lock Det.
- 10KΩ

Output
PACKAGE DIMENSIONS
(Suffix: PF)

8-LEAD PLASTIC FLAT PACKAGE
(CASE No: FPT-08P-M01)

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.
FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
International Marketing Div.
Furukawa Sogo Bldg., 6-1, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100, Japan
Tel: (03) 3216-3211
Telex: 781-2224361
FAX: (03) 3215-0662

North and South America
FUJITSU MICROELECTRONICS, INC.
Integrated Circuits Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: 408-922-9000
FAX: 408-432-9044

Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10,
6072 Dreieich-Buchschlag,
Germany
Tel: (06103) 690-0
Telex: 411963
FAX: (06103) 690-122

Asia
FUJITSU MICROELECTRONICS ASIA PTE LIMITED
51 Bras Basah Road,
Plaza By The Park,
#06-04 to #06-07
Singapore 0719
Tel: 336-1600
Telex: 55573
FAX: 336-1609