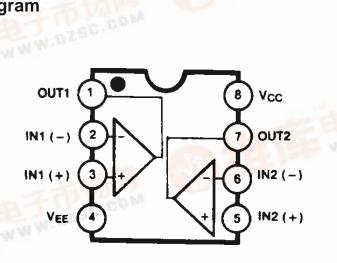

MC4558 Dual Operational Amplifier

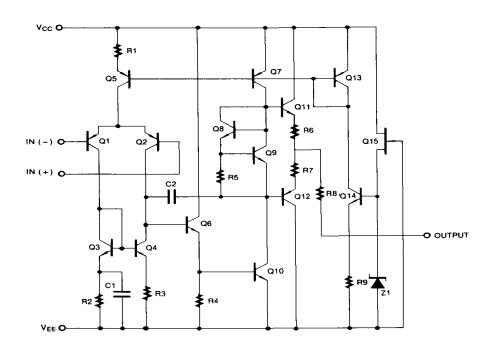
Features


- No frequency compensation required.
- No latch up.
- Large common mode and differential voltage range.
- Parameter tracking over temperature range.
- Gain and phase match between amplifiers.
- Internally frequency compensated.
- Low noise input transistors.

Descriptions

The MC4558 series is a monolithic integrated circuit designed for dual operational amplifier.

Internal Block Diagram



MC4558

Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	±22	V
Differential Input Voltage	VI(DIFF)	30	V
Input Voltage	VI	±15	V
Power Dissipation	PD	400	mW
Operating Temperature Range MC4558C MC4558V	Topr	0 ~ 70 -40 ~ 85	°C
Storage Temperature Range	TSTG	-65 ~ 150	°C

Electrical Characteristics

(VCC = 15V, VEE = - 15V , TA = 25 °C unless otherwise specified)

Poromotor	Symbol	Symbol Conditions		MC4558C/MC4558V			11	
Parameter	Symbol			Min	Тур	Max	Unit	
Input Offset Voltage	Vio	Rs≤10KΩ		-	2	6	mV	
	VIO		Note 1	-	-	7.5	- mv	
Input Offset Current				-	5	200		
	lio		TA=TA(MAX)	-	-	300	nA	
		TA =TA(MIN)		-	-	300		
Input Bias Current				-	30	500		
	IBIAS		TA=TA(MAX) -		-	800	nA	
		TA =TA(MIN)		-	-	800		
Large Signal	Gv	VO(P-P)= ±10\	/,RL≤2KΩ	20	200	-	V/mV	
Voltage Gain	0,		Note 1	-	-	-		
Common Mode Input Voltage Range	VI(R)		±12		±13	-	V	
	VI(R)		Note 1	-	-	-	v	
Common Mode Rejection Ratio	CMRR	Rs≤10KΩ		70	90	-	dB	
	OWINN		Note 1	-	-	-		
Supply Voltage Rejection Ratio	PSRR	PSRR RS≤10KΩ		76	90	-	- dB	
			Note 1	76	90	-		
Output Voltage Swing	VO(P.P)	RL≥10KΩ	±12 ±14		-	v		
	VO(P.P)	RL≥2KΩ		±10	±13	-		
Supply Current (Both Amplifiers)				-	3.5	5.8		
	ICC		TA =TA(MAX)	-	-	5.0	mA	
			TA =TA(MIN)	-	-	6.7		
Power Consumption (Both Amplifiers)				-	70	170		
	PC		TA =TA(MAX)	-	-	150	mW	
			Ta = TA(MIN) -		-	200		
Slew Rate (Note2)	SR	VI =10V, RL≥2 CI≤100pF	RΩ	1.2	-	-	V/µs	
Rise Time (Note2)	T _R	VI =20mV, RL CI≤100pF	≥2KΩ	-	0.3	-	μs	
Overshoot (Note2)	OS	VI =20mV, RL2 CI≤100pF	≥2KΩ	-	15	-	%	

Note :

 $1. \ MC4558C: T_{A}(\text{MIN}) \leq T_{A} \leq T_{A}(\text{MAX}) = 0 \leq T_{A} \leq 70 \ ^{\circ}\text{C} \ , \ MC4558V: T_{A}(\text{MIN}) \leq T_{A} \leq T_{A}(\text{MAX}) = -40 \leq T_{A} \leq +85 \ ^{\circ}\text{C} \leq 100 \ \text{C} \ , \ MC4558V: T_{A}(\text{MIN}) \leq T_{A} \leq 100 \ \text{C} \ \text{$

2. Guaranteed by design.

Typical Performance Characteristics



Figure 1. Burst Noise vs Source Resistance

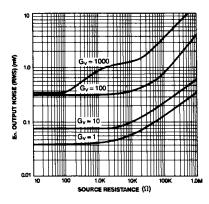


Figure 3. Output Noise vs Source Resistance

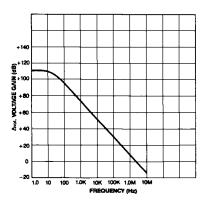


Figure 5. Open Loop Frequency Response

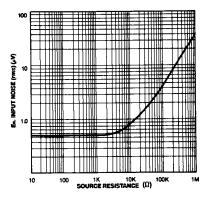


Figure 2. RMS Noise vs Source Resistance

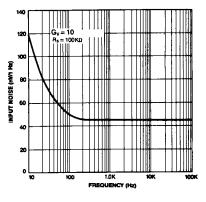


Figure 4. Spectral Noise Density

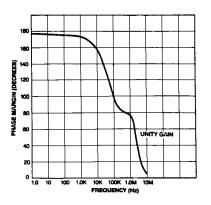


Figure 6. Phase Margin vs Frequency

Typical Performance Characteristics (continued)

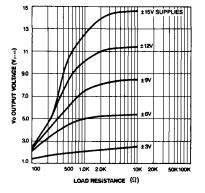


Figure 7. Positive Output Voltage Swing vs Load Resistance

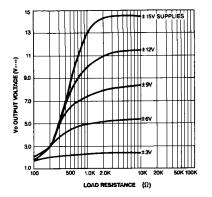


Figure 8. Negative Output Voltage Swing vs Load Resistance

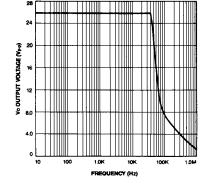
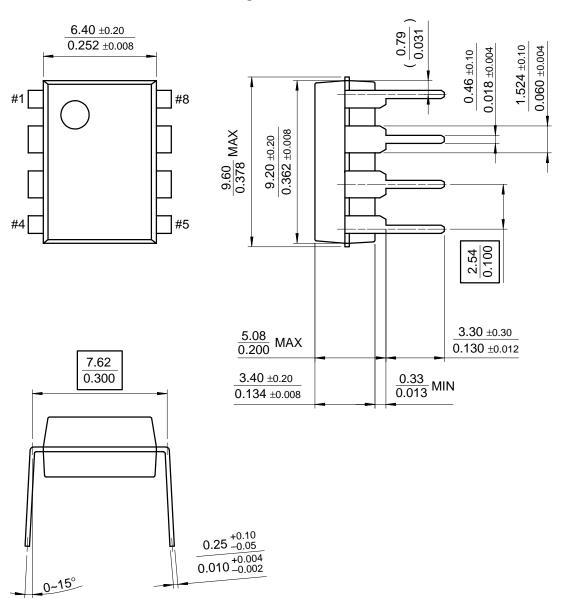
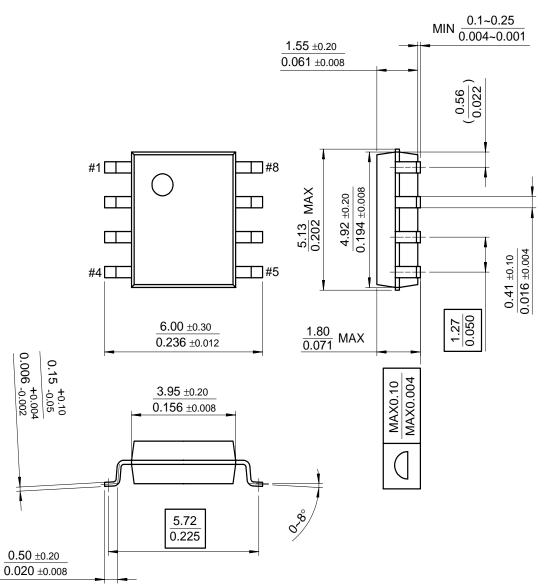



Figure 9. Power Bandwidth (Large Signal Output Swing vs Frequency)

Mechanical Dimensions


Package

8-DIP

Mechanical Dimensions (Continued)

Package

8-SOP

Ordering Information

Product Number	Package	Operating Temperature		
MC4558CP	8-DIP	0 ~ + 70°C		
MC4558CD	8-SOP	0~+70 C		
MC4558VP	8-DIP	-40 ~ +85°C		
MC4558VD	8-SOP	-40 ~ +05 °C		

MC4558

MC4558

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.