

Contents

Page	Section	Title
4	1.	Introduction
5	2.	Features of the MSP 3410 B
5 5	2.1. 2.2.	Features of the Demodulator and Decoder Sections Features of the DSP-Section
5	2.3.	Features of the Analog Section
6	3.	Application Fields of the MSP 3410 B
6	3.1. 3.2.	NICAM plus FM-Mono
6	3.2.	German 2-Carrier System (DUAL FM System)
9	4.	Architecture of the MSP 3410 B
9	4.1. 4.1.1.	Demodulator Block Analog Sound IF – Input Section
9	4.1.1. 4.1.2.	Quadrature Mixers
10	4.1.3.	Lowpass Filtering Block for Mixed Sound IF Signals
10	4.1.4.	CORDIC Block
10	4.1.5.	Differentiate
10	4.1.6.	Lowpass Filter Block for Demodulated Signals
10	4.1.7.	High Deviation FM Mode
11	4.1.8.	MSP-Mute Function in the Dual Carrier FM Mode
11	4.1.9.	DQPSK-Decoder
11 11	4.1.10. 4.2.	NICAM-Decoder Analog Section and SCART Switches
11	4.2.	MSP 3410 B Audio Baseband Processing
12	4.4.	Dual Carrier FM Stereo/Bilingual Detection
13	5.	Control Bus Interface
14	5.1.	Protocol Description
14	5.2.	Proposal for MSP 3410 B I ² C Telegrams
14	5.2.1.	Symbols
14	5.2.2.	Write Telegrams
14	5.2.3.	Read Telegrams
14 14	5.2.4. 5.3.	Examples Start Up Sequence
15	6.	N-Bus Interface
15	7.	Pay-TV Interface
15	8.	Audio PLL and Crystal Specifications
16	9.	S-Bus Interface
16	10.	I ² S Bus Interface
17	11.	Programming the Demodulator Part
17	11.1.	Write Registers: Table and Addresses
18	11.2.	Write Registers: Functions and Values
18 19	11.2.1. 11.2.2.	Setting of Parameter AD_CV
20	11.2.2.	Control Register 'MODE_REG' FIR-Parameter
_0	11.2.0.	The familian

Contents, continued

Page	Section	Title
21	11.2.4.	DCO-Increments
22	11.3.	Read Registers: Listing and Addresses
22	11.4.	Read Registers: Functions and Values
23	11.5.	Sequences to Transmit Parameters and Start of Processing
24	11.6.	Software Proposals for Multistandard TV-Sets
24	11.6.1.	Multistandard Including System B/G with NICAM/FM-Mono only
24	11.6.2.	Multistandard Including System I with NICAM/FM-Mono only
24	11.6.3.	Multistandard Including System B/G with NICAM/FM-Mono and German DUAL FM
24	11.6.4.	Satellite Mode
25	11.6.5.	Automatic Search Function for FM-Carrier Detection
25	11.6.6.	Automatic Standard Detection
26	12.	Programming the Audio Processing Part
26	12.1.	Summary of the DSP Control Registers
31	12.2.	Exclusions
32	12.3.	Summary of Readable Registers
34	13.	Specifications
34	13.1.	Outline Dimensions
35	13.2.	Pin Connections and Descriptions
38	13.3.	Pin Configuration
39	13.4.	Pin Circuits
41	13.5.	Electrical Characteristics
41	13.5.1.	Absolute Maximum Ratings
42	13.5.2.	Recommended Operating Conditions
47	13.5.3.	Characteristics
54	14.	Timing Diagrams
54	14.1.	Power-up Sequence
54	14.2.	I ² C Bus Timing Diagram
55	14.3.	I ² S Bus Timing Diagram
56	14.4.	SBUS Timing Diagram
57	15.	Application Circuit
58	16.	DMA Application
60	17.	I ² S Bus in Master/Slave Configuration with Standby Mode
61	18.	APPENDIX A: MSP 3410/3400B Technical Code History
63	19.	APPENDIX B: Documentation History
63	19.1.	MSP 3400
63	19.2.	MSP 3410 and MSP 3400
63	19.3.	MSP 3410 B and MSP 3400 B
64	20.	APPENDIX C: Documentation of known hardware restrictions for TC15
65	21.	Index

Multistandard Sound Processor

Release Notes:

The hardware description in this document is valid for the MSP 3410 B version F7 and following versions. The suffix "B" in the name denotes the requirements of the crystal with modified specifications.

For a brief history survey, please see appendix "MSP 3410 B Technical Code History".

The present document is version 0.8. Revision bars indicate significant changes to revision 0.7.

1. Introduction

The **MSP 3410 B** is a single-chip Multistandard Sound Processor for applications in analog and digital TV sets, satellite receivers and video recorders.

The MSP-family, which goes back to the MSP 2400, demonstrates in an impressive way the progressive development towards highly integrated ICs, offering more and more features and flexibility. The development of the MSP 2410 included an automatic gain control but reduced the amount of external components. The MSP 2410 reached a high level of performance and is the basis for the new generation.

The MSP 3410 B increases function integration in a spectacular way. By including the MSP2410 as a library cell and combining it with AD/DA converters and high performance digital signal processing, the chip offers a wide range of features. The complete TV-sound-processing, starting at the Sound-IF domain, will be performed by one single IC. The inputs of the IC are analog audio signals in baseband and at intercarrier position. The MSP 3410 B covers the sound processing of a wide range of TV-standards. Some examples are listed in Table 3–1.

The MSP 3410 B is produced in 1.0 μ m CMOS technology and is available in 68-pin PLCC and in 64-pin PSDIP packages.

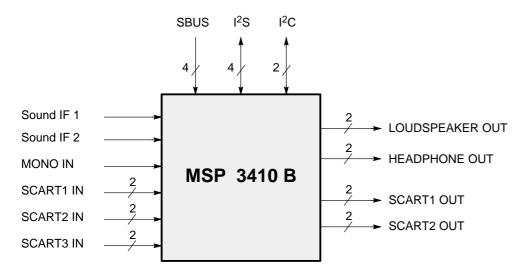


Fig. 1-1: Main I/O Signals MSP 3410 B

2. Features of the MSP 3410 B

2.1. Features of the Demodulator and Decoder Sections

The MSP 3410 B is designed to simultaneously perform digital demodulation and decoding of NICAM-coded TV stereo sound, as well as demodulation of FM-mono TV sound. Alternatively, two carrier FM systems according to the German or Korean terrestrial specs or the satellite specs can be processed with the MSP 3410 B.

Since it is simple and economic to demodulate AM sound carriers with conventional sound-IF-mixing units, the AM demodulation feature of the MSP will seldom be used. However, for FM carrier detection in satellite operation the AM demodulation offers a powerful feature to calculate the carrier field strength, which can be used for automatic search algorithms. So the IC facilitates a first step towards multistandard capability with its very flexible application and may be used in TV-sets, satellite tuners and video recorders.

The MSP 3410 B facilitates profitable multistandard capability, offering the following advantages:

- two selectable analog inputs (TV- and SAT-IF sources)
- Automatic Gain Control (AGC) for analog input: input range: 0.14 – 3 Vpp
- integrated A/D converter for sound-IF inputs
- all demodulation and filtering is performed on chip and is individually programmable
- simple realization of both digital NICAM standards (UK/Scandinavia)
- no external filter hardware is required
- only one crystal clock (18.432 MHz) is necessary
- Pay-TV for NICAM-mode
- FM carrier level calculation for automatic search algorithms and carrier mute function
- high deviation FM-mono mode (max. deviation: approx. ±360 kHz)

2.2. Features of the DSP-Section

- flexible selection of audio sources to be processed
- digital input and output interfaces via S-Bus for DMAvia AMU, and via I²S-Bus for external DSP-Processors featuring Graphic Equalizer, Surround Sound etc.
- performance of all deemphasis systems including adaptive Wegener Panda 1 without external components or controlling
- performance of D2MAC audio together with an AMU 2481
- digitally performed FM-identification decoding and dematrixing
- digital baseband processing: volume, bass, treble, pseudostereo and basewidth enlargement
- simplified controlling of volume, bass, treble etc.
- increased audio bandwidth for FM-Audio-signals (20 Hz 15 kHz , \pm 1 dB)

2.3. Features of the Analog Section

 three selectable analog pairs of audio baseband inputs (=three SCART inputs)

Input level: \leq 2 V RMS; input impedance: \geq 25 k Ω

- one selectable analog mono input (i.e. AM sound);
 Input level: ≤ 2 V RMS;
 input impedance: ≥10 kΩ
- two high quality A/D converters; S/N-Ratio: ≥85 dB
- 20 Hz to 20 kHz Bandwidth for SCART-to-SCART-Copy facilities
- MAIN (loudspeaker) and AUX (headphones): two pairs of 4-fold oversampled D/A-converters Output level per channel: max. 1.4 VRMS Output resistance: max. 5 kΩ S/N-Ratio: ≥85 dB at maximum volume max. noise voltage in mute mode: ≤ 10 μ V (BW: 20 Hz ... 16 kHz)
- one pair of four-fold oversampled D/A-converters supplying two selectable pairs of SCART-Outputs. Output level per channel: max. 2 V RMS, output resistance: max. 0.5 kΩ, S/N-Ratio: ≥85 dB (20 Hz ... 16 kHz)

3. Application Fields of the MSP 3410 B

In the following sections, a brief overview about the two main TV sound standards, NICAM 728 and German FM-Stereo, demonstrates the complex requirements of a multistandard audio IC.

3.1. NICAM plus FM-Mono

According to the British, Scandinavian and Spanish TV-standards, high quality stereo sound is transmitted digitally. The systems allow two high quality digital sound channels to be added to the already existing FM channel. The sound coding follows the format of the so-called Near Instantaneous Companding System (NICAM 728). Transmission is performed using Differential Quadrature Phase Shift Keying (DQPSK). Table 3–2 gives some specifications of the sound coding (NICAM); Table 3–3 offers an overview of the modulation parameters.

In the case of NICAM/FM mode there are three different audio channels available: NICAM A,NICAM B and FM-mono. NICAM A and B may belong either to a stereo or to a dual language transmission. Information about operation mode and about the quality of the NICAM signal can be read by the CCU via the control bus. In the case of low quality (high bit error rate) the CCU may decide to switch to the analog FM-mono sound.

3.2. German 2-Carrier System (DUAL FM System)

Since September 1981, stereo and dual sound programs have been transmitted in Germany using the 2-carrier system. Sound transmission consists of the already existing first sound carrier and a second sound carrier additionally containing an identification signal. Some more details of this standard are given in Table 3–4.

Table 3-1: European TV standards

TV-System	Position of Sound Carrier /MHz	Sound Modulation	Color System	Country
B/G	5.5/5.74	FM-Stereo	PAL	Germany
B/G	5.5/5.85	FM-Mono/NICAM	PAL	Scandinavia,Spain
L	6.5/5.85	AM-Mono/NICAM	SECAM	France
1	6.0/6.552	FM-Mono/NICAM	PAL	UK
D,K	6.5	FM-Mono	SECAM	USSR
М	4.5	FM-Mono	NTSC	USA
Satellite Satellite	6.5 7.02/7.2	FM-Mono FM-Stereo	PAL PAL	Europe (ASTRA) Europe (ASTRA)

Table 3-2: Summary of NICAM 728 sound coding characteristics

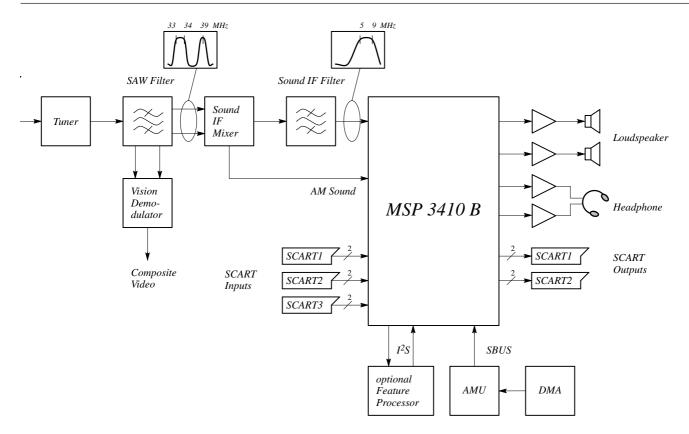

Characteristics	Values
Audio sampling frequency	32 kHz
Number of channels	2
Initial resolution	14 bit/sample
Companding characteristics	near instantaneous, with compression to 10 bits/sample in 32-samples (1 ms) blocks
Coding for compressed samples	2's complement
Preemphasis	CCITT Recommendation J.17 (6.5 dB attenuation at 800 Hz)
Audio overload level	+12 dBm0 measured at the unity gain frequency of the preemphasis network (2 kHz)

Table 3–3: Summary of NICAM 728 sound modulation parameters

Specification	UK Scandinavia/Spain France					
Carrier frequency of digital sound	6.552 MHz	5.85 MHz	5.85 MHz			
Transmission rate		728 kBit/s 1 part/million				
Type of modulation	Differentially enco	oded quadrature phase sh	ift keying (D0	QPSK)		
Spectrum shaping	by means of Roll-off filters					
Roll-off factor	1.0	0.4	0.4			
Carrier frequency of analog sound	6.0 MHz	5.5 MHz	6.5 MHz AM mono			
component	FM mono	FM mono	terrestric	cable		
Power ratio between vision carrier and analog sound carrier	10 dB	13 dB	10 dB	16 dB		
Power ratio between analog and modulated digital sound carrier	10 dB	7 dB	17 dB	11 dB		

Table 3-4: Key parameters for German 2-carrier sound system

Sound Carriers	Channel FM1	Channel FM2		
Intercarrier frequencies	5.5 MHz	5.7421875 MHz		
Vision/sound power difference	13 dB	20 dB		
Sound bandwidth	40 Hz to	15 kHz		
Pre-emphasis	50	μs		
Frequency deviation	±50	kHz		
Sound Signal Components				
Mono transmission	mono	mono		
Stereo transmission	(L+R)/2	R		
Dual sound transmission	language A	language B		
Identification of Transmission Mode on Chan	nel 2			
Pilot carrier frequency		54.6875 kHz		
Type of modulation		AM		
Modulation depth		50%		
Modulation frequency	mono: unmodulated stereo: 117.5 Hz dual: 274.1 Hz			

According to the mixing characteristics of the Sound-IF mixer, the Sound-IF filter may be omitted.

Fig. 3–1: Typical MSP 3410 B application

4. Architecture of the MSP 3410 B

Fig. 4–1 shows a simplified block diagram of the IC. Its architecture is split into three functional blocks:

- 1. demodulator and decoder section
- 2. digital signal processing (DSP) section performing audio baseband processing
- 3. analog section containing two A/D-converters, 6 D/A-converters, and channel selection

4.1. Demodulator Block

4.1.1. Analog Sound IF - Input Section

The input pins ANA_IN1+, ANA_IN2+ and ANA_IN- offer the possibility to connect two different sound IF sources to the MSP 3410 B. By means of bit [8] of AD_CV (see Table 11-2) either terrestrial or satellite sound IF signals can be selected. The analog-to-digital conversion of the preselected sound IF signal is done by a flash-converter, whose output can be used to control an analog automatic gain circuit (AGC), providing optimum level for a wide range of input levels. It is possible to switch between automatic gain control and a fixed (setable) input gain. In the optimum case, the input range of the AD converter is completely covered by the sound if source. Some combinations of SAW filters and

sound IF mixer ICs however show large picture components on their outputs. In this case filtering is recommended. It was found, that the high pass filters formed by the coupling capacitors at pins ANA_IN1+ and ANA_IN2+ (as shown in the application diagram) are sufficient in most cases.

4.1.2. Quadrature Mixers

The digital input coming from the integrated A/D converter may contain audio information at a frequency range of theoretically 0 to 9 MHz corresponding to the selected standards. By means of two programmable quadrature mixers two different audio sources, for example NICAM and FM-mono, may be shifted into baseband position. In the following, the two main channels are provided to process either:

- NICAM (channel 1) and FM mono (channel 2) simultaneously or, alternatively,
- FM2 (channel 1) and FM1 (channel 2).

Two independent digital oscillators are provided to generate two pairs of sin/cos-functions. Two programmable increments, to be divided up into Low- and High Part, determine frequency of the oscillator, which corresponds to the frequency of the desired audio carrier. In section 11.1., format and values of the increments are listed.

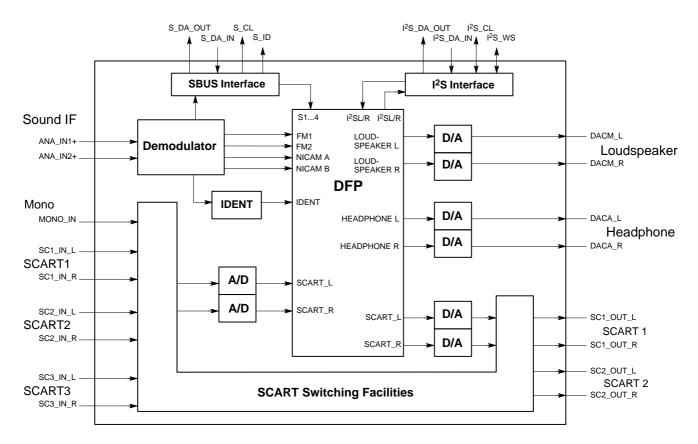


Fig. 4–1: Architecture of the MSP 3410 B

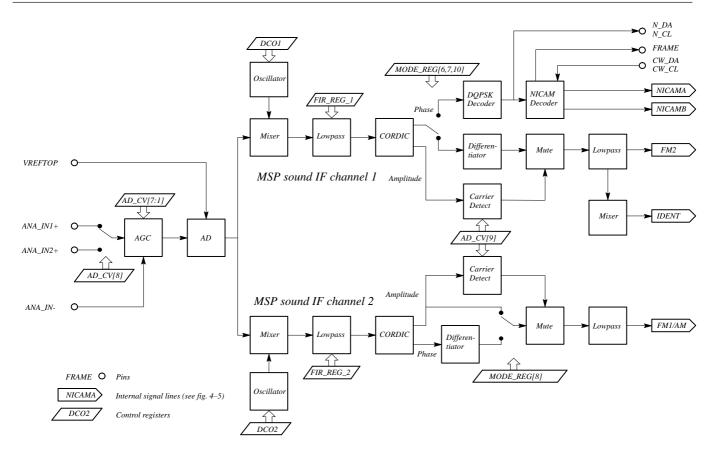


Fig. 4-2: Demodulator architecture

4.1.3. Lowpass Filtering Block for Mixed Sound IF Signals

By means of decimation filters the sampling rate is reduced. Then, data shaping and/or FM bandwidth limitation is performed by a linear phase Finite Impulse Response (FIR-filter). Just like the oscillators' increments the filter coefficients are programmable and are written into the IC by the CCU via the control bus. Thus, for example, different NICAM versions can easily be implemented. Two not necessarily different sets of coefficients are required, one for channel 1 (NICAM or FM2) and one for channel 2 (FM1=FM-mono). In section 11.2.3. several coefficient sets are proposed.

Since both MSP channels are designed to process the German FM Stereo System with the same FIR coefficient set (despite 7 dB power level difference of the two sound carriers), the MSP channel 1 has an internal overall gain of 6 dB. To process two carriers of identical power level these 6 dBs have to be taken into account by decreasing the values of the channel 1 coefficient set, which has already been done in table 11–7.

4.1.4. CORDIC Block

The filtered sound IF signals are demodulated by transforming the incoming signals from Cartesian into polar format by means of a CORDIC processor block. On the output, the phase and amplitude is available for further

processing. AM signals are derived from the amplitude information whereas the phase information serves for FM and NICAM (DQPSK) demodulation.

4.1.5. Differentiators

FM demodulation is completed by differentiating the phase information output of the CORDIC block.

4.1.6. Lowpass Filter Block for Demodulated Signals

The demodulated FM and AM signals are further low-pass filtered and decimated to a final sampling frequency of 32 kHz. The usable bandwidth of the final baseband signals is about 15 kHz.

4.1.7. High Deviation FM Mode

By means of MODE_REG [9], the maximum FM-deviation can be extended to approximately ± 360 kHz. Since this mode can be applied only for the MSP sound IF channel 2, the corresponding matrices in the baseband processing must be set to sound A. Apart from this, the coefficient sets 380 kHz FIR_REG2 or 500 kHz FIR_REG2 must be chosen for the FIR_REG_2. In relation to the normal FM-mode, the audio level of the high-deviation mode is reduced by 6 dB.

4.1.8. MSP-Mute Function in the Dual Carrier FM Mode

To prevent noise effects or FM identification problems in the absence of one of the two FM carriers the MSP 3410 B offers a carrier detection feature, which must be activated by means of AD_CV[9], see section 11.2.1. If no FM carrier is available at the MSP channel 1, the corresponding channel FM2 (and S-Bus output samples 3 and 4) are muted. If no FM carrier is available at the MSP channel 2, the corresponding channel FM1 (and S-Bus output samples 1 and 2) are muted. In case of the absence of both FM carriers pure noise will be amplified by the input AGC. Therefore a proper mute function depends on the noise quality of the TV set's IF part and cannot be guaranteed. The mute function is not recommended for the satellite mode.

4.1.9. DQPSK-Decoder

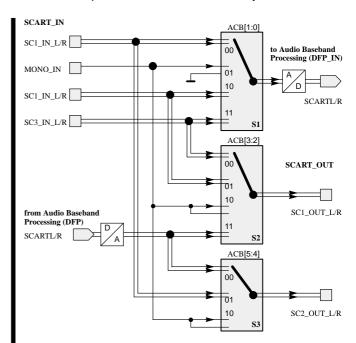
In case of NICAM-mode the phase samples are decoded according the DQPSK-Coding scheme. The output of this block contains the original NICAM-bitstream, which is available at the N-Bus interface.

4.1.10. NICAM-Decoder

Before any NICAM decoding can start, the MSP must lock to the NICAM frame structure by searching and synchronizing to the so-called Frame Alignment Words (FAW).

To reconstruct the original digital sound samples the NI-CAM-bitstream has to be descrambled, deinterleaved and rescaled. Also bit error detection and correction (concealment) is performed in this NICAM specific block.

To facilitate the Central Control Unit CCU to switch the TV-set to the actual sound mode, control information on the NICAM mode and bit error rate are supplied by the the NICAM-Decoder. It can be read out via the I²C-Bus.


4.2. Analog Section: SCART Switches and Standby Mode

The analog input and output sections offer a wide range of switching facilities, which are shown in Fig. 4–3. To design a TV set with 3 pairs of SCART-inputs and two pairs of SCART-outputs, no external switching hardware is required.

The switches are controlled by the ACB bits defined in the audio processing interface (see section 12. Programming the Audio Processing Part).

If the MSP 3410 B is switched off by first pulling STAND-BYQ low and then disconnecting the 5V but keeping the 8V power supply ('Standby'-mode), the switches S1,

S2 and S3 maintain their position and function. This facilitates the copying from selected SCART-inputs to SCART-outputs in the TV-set's standby mode.

Fig. 4–3: SCART-Switching Facilities Bold lines determine the default configuration

In case of power-on start or starting from standby, the IC switches automatically to the default configuration, shown in the figure above. This action takes place after the first I²C transmission into the DFP part. By transmitting the ACB register first, the individual default setting mode of the TV set can be defined.

4.3. MSP 3410 B Audio Baseband Processing

By means of the DFP processor all audio baseband functions are performed by digital signal processing (DSP). The DSP functions are grouped into three processing parts: Input preprocessing, channel selection and channel postprocessing.

The input preprocessing is intended to prepare the various signals of all input sources in order to form a standardized signal at the input to the channel selector. The signals can be adjusted in volume, are processed with the appropriate deemphasis and are dematrixed if necessary.

Having prepared the signals that way, the channel selector makes it possible to distribute all possible source signals to the desired output channels.

The ability to route in an external coprocessor for special effects like graphic equalizer, surround processing, and sound field processing is of special importance. Routing can be done with each input source and output channel via the I²S inputs and outputs.

All input and output signals can be processed simultaneously with the exception that FM2 cannot be pro-

cessed at the same time as NICAM. Note that the NICAM input signals are only available in the MSP 3410 B version. While processing the adaptive deemphasis, no dual carrier stereo (German or Korean) or NICAM processing is possible. Identification values are not valid either.

4.4. Dual Carrier FM Stereo/Bilingual Detection

In the German and Korean TV standard, audio information can be transmitted in three modes: Mono, stereo or bilingual. To obtain information about the current audio

operation mode, the MSP 3410 B detects the so-called identification signal. Information is supplied via the Stereo Detection Register to an external CCU.

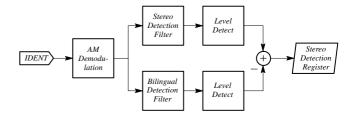


Fig. 4-4: Stereo/bilingual detection

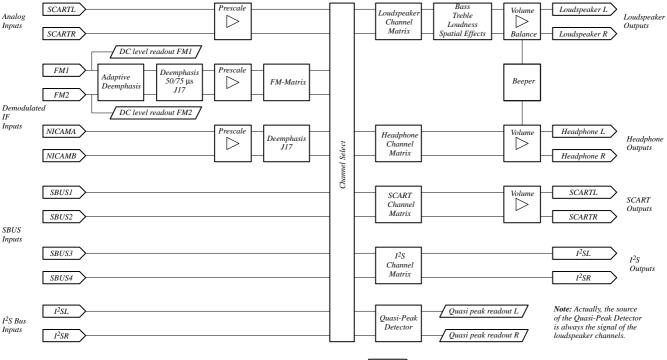


Fig. 4–5: Audio baseband processing (DFP-Firmware)

NICAMA Internal signal lines (see fig. 4–2)

Table 4-1: Some examples for recommended channel assignments for demodulator and audio processing part

Mode	MSP Sound IF- Channel 1	MSP Sound IF- Channel 2	FM- Matrix	Channel- Select	Channel Matrix	
B/G-Stereo	FM2 (5.74 MHz): 2R	FM1 (5.5 MHz): L+R	B/G Stereo	Speakers: FM	Stereo	
B/G-Bilingual	FM2 (5.74 MHz): Sound B	FM1 (5.5 MHz): Sound A	No Matrix	Speakers: FM H. Phone: FM	Speakers: Sound A H. Phone: Sound B	
NICAM-I-ST/ FM-mono	NICAM (6.552 MHz)	FM (6.0 MHz): mono	No Matrix	Speakers: NICAM H. Phone: FM	Speakers: Stereo H. Phone: Sound A	
Sat-Mono	not used	not used FM (6.5 MHz): mono		Speakers: FM	Sound A	
Sat-Stereo	7.2 MHz: R	7.02 MHz: L	No Matrix	Speakers: FM	Stereo	
Sat-Bilingual	7.38 MHz: Sound C	7.02 MHz: Sound A	No Matrix	Speakers: FM H. Phone: FM	Speakers: Sound A H. Phone: Sound B=C	
Sat-High Dev. Mode	don't care	6.552 MHz	No Matrix	Speakers: FM H. Phone: FM	Speakers: Sound A H. Phone: Sound A	

5. Control Bus Interface

As a slave receiver, the MSP 3410 B can be controlled via I^2C bus. Access to internal memory locations is achieved by subaddressing. The FP processor and the DFP processor parts have two separate subaddressing register banks.

In order to allow for more MSP 3410 B IC's to be connected to the control bus, an ADR_SEL pin has been implemented. With ADR_SEL pulled to high, the MSP 3410 B responds to changed device addresses, thus two identical devices can be selected. Other devices of the same family will have different subaddresses (e.g. 34X0).

By means of the RESET bit in the CONTROL register all devices with the same device address are reset.

The IC is selected by asserting a special device address in the address part of a I²C transmission. A device address pair is defined as a write address (80 hex or 84 hex) and a read address (81 hex or 85 hex). Writing is done by sending the device write address first, followed by the subaddress byte, two address bytes, and two data bytes. For reading, the read address has to be transmitted first by sending the device write address (80 hex or 84 hex) followed by the subaddress byte and two address bytes. Without sending a stop condition, reading of the addressed data is done by sending the device

read address (81 hex or 85 hex) and reading two bytes of data. Refer to Fig. 5–1: I²C Bus Protocol and section 5.2. Proposal for MSP 3410 B I²C Telegrams.

Due to the internal architecture of the MSP 3410 B, the IC cannot react immediately to an I²C request. The typical response time is about 0.3 ms for the DFP processor part and 1 ms for the FP processor part if NICAM processing is active. If the receiver (MSP) can't receive another complete byte of data until it has performed some other functions, for example servicing an internal interrupt, it can hold the clock line I²C_CL LOW to force the transmitter into a wait state. The positions within a transmission where this may happen are indicated by 'Wait' in section 5.1. The maximum Wait-period of the MSP during normal operation mode is less than 7 ms.

 I^2C -Bus error conditions (valid only from TC17 on): In case of any internal error, the MSPs wait-period is extended to 7.07 ms. Afterwards the MSP does not acknowledge (NAK) the device address. The data line will be left HIGH by the MSP and the clock line will be released. The master can then generate a STOP condition to abort the transfer.

By means of NAK, the master is able to recognize the error state and to reset the IC via I²C-Bus. While transmitting the reset protocoll (s. 5.2.4.) to 'CONTROL', the master must ignore the not acknowledge bits (NAK) of the MSP.

Table 5-1: I²C Bus Device and Subaddresses

Name	Binary Value	Hex Value Hex Value		Mode	Function
		ADR_SEL=low	ADR_SEL=high		
MSP	1000 000x	80/81	84/85	R/W	MSP device address
CONTROL	0000 0000	00		W	software reset
TEST	0000 0001	01		W	only for internal use
WR_FP	0001 0000	10		W	write address FP
RD_FP	0001 0001	11		W	read address FP
WR_DFP	0001 0010	12		W	write address DFP
RD_DFP	0001 0011		13	W	read address DFP

Table 5–2: Control Register

Name	MSB	14	131	LSB
CONTROL	RESET	0	0	0

5.1. Protocol Description

Write to DFP or FP

		s	hex 80	Wait	ACK	sub-addr	ACK	addr-byte high	ACK	addr-byte low	ACK	data-byte high	ACK	data-byte low	ACK	Р
--	--	---	--------	------	-----	----------	-----	-------------------	-----	---------------	-----	----------------	-----	---------------	-----	---

Read from DFP or FP

Write to Control or Test Registers

S	hex 80	Wait	ACK	sub-addr	ACK	data-byte high	ACK	data-byte low	ACK	Р	
---	--------	------	-----	----------	-----	----------------	-----	---------------	-----	---	--

Note: $S = I^2C$ -Bus Start Condition from master $P = I^2C$ -Bus Stop Condition from master

 $ACK = Acknowledge-Bit: LOW on I^2C_DA from slave (=MSP, grey)$

or master (=CCU, hatched)

NAK = Not Acknowledge-Bit: HIGH on I²C_DA from master (= CCU, hatched) to indicate 'End of Read'

or from MSP indicating internal error state (not illustrated, only for version F7 on.)

Wait = I²C-Clock line held low by the slave (=MSP) while interrupt is serviced (< 7 ms)

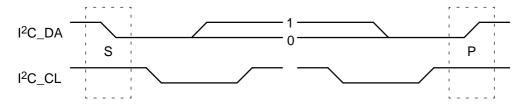


Fig. 5–1: I²C bus protocol (MSB first; data must be stable while clock is high)

5.2. Proposal for MSP 3410 B I²C Telegrams

5.2.1. Symbols

< Start Condition
> Stop Condition
aa Address Byte
dd Data Byte

5.2.2. Write Telegrams

<80 00 dd dd> software RESET
<80 10 aa aa dd dd> write data into FP register
<80 12 aa aa dd dd> write data into DFP register

5.2.3. Read Telegrams

<80 11 aa aa <81 dd dd> read data from FP register <80 13 aa aa <81 dd dd> read data from DFP register

5.2.4. Examples

<80 00 80 00> RESET all MSP's statically
<80 00 00 00> clear RESET
<80 12 00 08 01 20> set loudspeaker channel source to NICAM and Matrix to STEREO

5.3. Start Up Sequence

After power on or RESET the IC is in an inactive state. The CCU has to transmit the required coefficient set for a given operation via the I²C bus. Initialization must start with the demodulator part. If required for any reason, from version F7 on, the audio processing part can be loaded before the demodulator part.

6. N-Bus Interface

The N-Bus interface consists of two lines, N-data and N-clock. The pure NICAM_728 data stream (before descrambling) is available together with a 728 kHz clock signal for the purpose of data transmission. N-Bus signals are based on TTL-levels. Data are latched with the falling clock edge.

7. Pay-TV Interface

The MSP 3410 B facilitates the reception of encrypted NICAM sound, which is provided by Pay-TV systems. By means of bit 1 of the control word 'MODE REG' the operation mode 'PAY-TV' can be activated. The MSP 3410 B inherent descrambler generally uses a 9-bit start sequence, which initializes a pseudo random sequence generator each ms. In normal operation mode the 9-bit sequence exists of 9 bits having each high level, which are loaded automatically into the descrambler's shift register. In the Pay-TV mode these bits have to be loaded via the two pins CW_DA and CW_CL into the mentioned shift register. The time window to load one complete 9-bit sequence is given by the high time of the frame signal which is available on pin 5. It is not necessary to load a new sequence at each ms, because if no new sequence has been transmitted, the old one is saved. If less than 9 new bits at each ms are loaded, one has to consider that any new incoming bit shifts the old ones by one position inside the shift register. A complete timing diagram is illustrated in Fig. 7-1.

8. Audio PLL and Crystal Specifications

The MSP 3410 B requires a 18.432 MHz (10 pF, parallel) crystal. The clock supply of the whole system depends on the MSP 3410 B operation mode:

1. FM-Stereo:

The system clock runs free on the crystal's 18.432 MHz.

2. D2-MAC operation:

In this case, the system clock is locked to a synchronizing signal (DMA_SYNC) supplied by the D2-MAC chip. The DMA and the AMU chips can be driven by the MSP 3410 B audio clock (AUD_CL_OUT).

3. NICAM and FM mono:

An integrated clock PLL uses the 364 kHz baud-rate, accomplished in the NICAM demodulator block, to lock the system clock to the bit rate respective 32 kHz sampling rate of the NICAM transmitter. As a result, the whole audio system is supplied with a controlled 18.432 MHz clock.

Remark on using the crystal:

External capacitors at each crystal pin to ground are required. They are necessary for tuning the open-loop frequency of the internal PLL and for stabilizing the frequency in closed-loop operation. The higher the capacitors, the lower the clock frequency results. The nominal free running frequency should match the center of the tolerance range between 18.433 and 18.431 MHz as closely as possible.

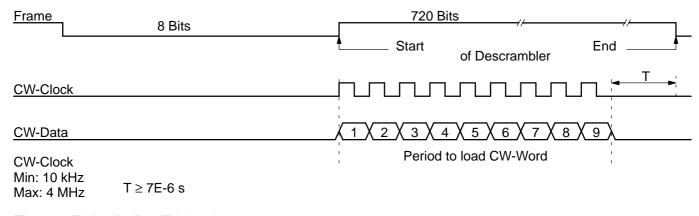


Fig. 7–1: Timing for Pay-TV signals

9. S-Bus Interface

Digital audio information provided by the DMA2381 via the AMU is serially transmitted to the MSP 3410 B via the S-Bus. The MSP 3410 B always has the master function.

The S-Bus interface consists of four pins:

1. S DA IN:

Four channels (4*16 bits) per sampling cycle (32 kHz) are transmitted.

2. S CL:

Gives the timing for the transmission of S-DATA (4.608 MHz).

3. S ID:

After 64 S-CLOCK cycles the S_ID determines the end of one sampling period.

4. S_DA_OUT:

FM-Demodulator or NICAM decoder output for test purpose.

10. I²S Bus Interface

By means of this standardized interface, additional feature processors can be connected to the MSP 3410 B. Two possible formats are supported: The standard mode (MODE_REG[4]=0) selects the SONY format, where the I²S_WS signal changes at the word boundaries. The so-called PHILIPS format, which is characterized by a change of the I²S_WS signal one I²S_CL period before the word boundaries, is selected by setting MODE_REG[4]=1.

The MSP 3410 B normally serves as the master on the I²S interface. Here the clock and word strobe lines are driven by the MSP 3410 B. By setting MODE_REG[3]=1, the MSP 3410 B is switched to a slave mode. Now these lines are input to the MSP 3410 B and the master clock is synchronized to 576 times the I²S_WS rate (32 kHz). No NICAM or D2MAC operation is possible in this mode.

The I²S bus interface consists of four pins:

1. I²S DA IN:

For input, two channels (2*16 bits) per sampling cycle (32 kHz) are transmitted.

2. I²S_DA_OUT:

For output, two channels (2*16 bits) per sampling cycle (32 kHz) are transmitted.

I²S_CL:

Gives the timing for the transmission of I²S serial data (1.024 MHz).

4. I2S WS:

The I²S_WS word strobe line defines the left and right sample.

11. Programming the Demodulator Part

11.1. Write Registers: Table and Addresses

In Table 11-1 all Write Registers are listed.

All transmissions on the control bus are 16 bits wide. Data for the demodulator part (FP) have 8 or 12 significant bits. These data have to be inserted LSB bound and filled with zero bits into the 16 bit transmission word.

Accessing a process address starts specific actions in the FP processor. For example addressing register 60_{hex} activates the internal transfer of all preloaded data (MODE_REG, DCO1_LO/HI) into their final hardware registers. It's only the access of the address 60_{hex} that counts, the two data bytes in the transmission have no meaning. Table 4–1 explains how to assign FM carriers to the MSP-Sound IF channels and the corresponding matrix modes in the audio processing part.

Table 11-1: MSP 3410 B write registers

Register	Write Address (hex)	Function
AD_CV	00BB	input selection, configuration of AGC and Mute Function and selection of A/D-converter
MODE_REG	0083	mode register
FIR_REG_1 FIR_REG_2	0001 0005	serial shift register for $6 \cdot 8$ bit, filter coefficient channel 1 (48 bit) serial shift register for $6 \cdot 8$ bit, $+ 2 \cdot 12$ bit off set (total 72 bit)
DCO1_LO DCO1_HI DCO2_LO DCO2_HI	0093 009B 00A3 00AB	increment channel 1 Low Part increment channel 1 High Part increment channel 2 Low Part increment channel 2 High Part
FAWCT_SOLL FAW_ER_TOL	0107 010F	To synchronize to the frame structure of the NICAM bit stream, the MSP checks the data for Frame Alignment Words (FAWs). After having captured the first one, the MSP continues to check for n frame periods. On having found at least n-m FAWs after this period, the frame synchronism is achieved and the MSP switches to active NICAM-decoding. The value for n has to be loaded into FAWCT_SOLL; the one for m into FAW_ER_TOL. Proposal: n=12; m=2
AUDIO_PLL	02D7	audio PLL in case of NICAM 0 always open operation mode 1 to be closed = default
Process	Address (hex)	Function
LOAD_REG_1/2	0056	After switch on or changing the TV system (B/G to I, I to B/G) all write-parameters have to be transmitted via I ² C-Bus into the MSP 3410 B. Then 'Load_REG_1/2' writes them into the corresponding registers. FM-processing starts. These are MODE_REG, DCO1/2_LO/HI.
LOAD_REG_1	0060	In the case of a TV-Standard change in MSP channel 1, only new channel 1 parameters have to be transmitted into the IC via I ² C-Bus. These are: MODE_REG, DCO1_LO/HI. LOAD_REG_1 sets up the MSP channel 1 without interrupting the MSP channel 2 (FM1 or MONO channel).
SEARCH_NICAM	0078	To start the NICAM-processing, this address has to be transmitted into the FP.
SELF_TEST	0792	Check of the FP ALU (for testing only)

Note: The WRITE-Addresses cannot be used to read back the corresponding register values.

11.2. Write Registers: Functions and Values

In the following, the functions of some registers are explained and their (default) values are defined:

11.2.1. Setting of Parameter AD_CV

Table 11-2: AD_CV Register

	AD_CV 00BB _{hex}							
Bit	Meaning	Settings						
AD_CV [0]	test	0 = on (default) 1 = off (for testing)						
AD_CV [6:1]	Reference level in case of Automatic Gain Control = on (see Table 11–3). Constant gain factor when Automatic Gain Control = off (see Table 11–4).							
AD_CV [7]	Determination of Automatic Gain or Constant Gain	0 = constant gain 1 = automatic gain						
AD_CV [8]	Selection of analog input	0 = ANALOG IN1 1 = ANALOG IN2						
AD_CV [9]	MSP-Carrier-Mute Function	0 = off (no mute) 1 = on (mute as described in section 4.1.)						
AD_CV[10]	NICAM-FIFO-Watchdog (only for test mode)	0 = on (default) 1 = off (for testing)						
AD_CV[15:11]	reserved	0						

Table 11-3: Reference values for active AGC (AD_CV[7] = 1)

Application	Input Signal Contains	AD_CV [6:1] Ref. Value	AD_CV [6:1] in integer	Range of Input Signal at pin 41 or 43
Terrestrial TV	2 FM Carriers or 1 FM and 1 NICAM Carrier	101000	40	0.14 – 3 V _{pp} ¹⁾
SAT	1 or more FM Carriers	100011	35	0.14 – 3 V _{pp} ¹⁾
NICAM only	1 NICAM Carrier only	010100	20	0.07 – 1.0 V _{pp}

¹⁾ For signals above 1.4 Vpp, the minimum gain of 3 dB is switched and overflow of the AD converter may result. Due to the robustness of the internal processing, the IC works up to and even more than 3 Vpp, if norm conditions of FM/ NICAM or FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N-ratio of about 10 dB may appear.

Table 11–4: AD_CV parameters for constant input gain (AD_CV[7]=0)

Step	AD_CV [6:1] Constant Gain	Gain	Input Level at pin ANA_IN1+ and ANA_IN2+
0	000000	3.00 dB	maximum input level: $3 V_{pp}$ (FM) or $1 V_{pp}$ (NICAM) ¹⁾
1	000001	3.85 dB	· PP· / PP· /
2	000010	4.70 dB	
2 3	000011	5.55 dB	
4	000100	6.40 dB	
5	000101	7.25 dB	
6	000110	8.10 dB	
7	000111	8.95 dB	
8	001000	9.80 dB	
9	001001	10.65 dB	
10	001010	11.50 dB	
11	001011	12.35 dB	
12	001100	13.20 dB	
13	001101	14.05 dB	
14	001110	14.90 dB	
15	001111	15.75 dB	
16	010000	16.60 dB	
17	010001	17.45 dB	
18	010010	18.30 dB	
19	010011	19.15 dB	
20	010100	20.00 dB	maximum input level: 0.14 V _{pp}

¹⁾ For signals above 1.4 Vpp, the minimum gain of 3 dB is switched and overflow of the AD converter may result. Due to the robustness of the internal processing, the IC works up to and even more than 3 Vpp, if norm conditions of FM/NICAM or FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N-ratio of about 10 dB may appear.

11.2.2. Control Register 'MODE_REG'

The register 'MODE_REG' contains the control bits determining the operation mode of the MSP 3410 B; Table 11–5 explains all bit positions.

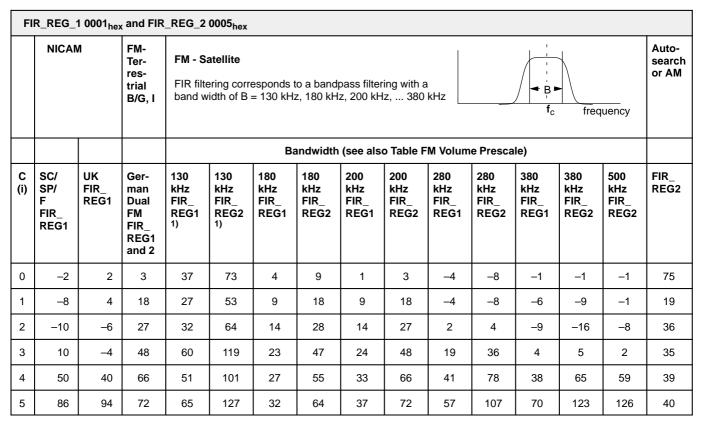
Table 11-5: Control word 'MODE_REG': all bits are "0" after power-on-reset

		MODE_REG 0083 _{hex}		
Bit	Function	Comment	Definition	Recom- mendation
[0]	DMA_SYNC ¹⁾	Synchronization to DMA	0 = NICAM (intern. Sync) 1 = D2MAC (ext. Sync)	Х
[1]	PAYTV_EN	Pay-TV	0 = off 1 = on	0
[2]	DESCR_DIS	NICAM-Descrambler	0 = on 1 = off	0
[3]	I ² S Mode ¹⁾	Master/Slave mode of the I ² S bus	0 = Master 1 = Slave	Х
[4]	I ² S_WS Mode	WS due to the Sony or Philips-Format	0 = Sony 1 = Philips	Х
[5]	Audio_CL_OUT	Switch Audio_Clock_Output to tristate	0 = on 1 = tristate	Х
[6]	NICAM ¹⁾	MSP-channel 1 mode	0 = FM 1 = Nicam	Х

		MODE_REG 0083 _{hex}					
Bit	Function	tion Comment Definition		Recom- mendation			
[7]	FM1 FM2	MSP-channel 1 mode	0 = Nicam 1 = FM	Х			
[8]	FM AM	MSP-channel 1/2 mode	0 = FM 1 = AM	0			
[9]	HDEV	High Deviation Mode (channel matrix must be sound A)	0 = normal 1 = high deviation mode	0			
[10]	S-Bus Setting	configuration of internal sound bus	0 = Nicam/FM-Mono 1 = Two Carrier FM	Х			
[11]	S-Bus Mode ²⁾	mode of sound bus ³⁾	0 = Tristate 1 = Active	0			
[15:12]	reserved	reserved	must be 0	0			
In c In c ²⁾ The ³⁾ To r	In case of NICAM operation, I ² S-slave mode or synchronization to DMA not possible. In case of synchonization to DMA, no I ² S-slave mode or NICAM is allowed. In case of I ² S-slave mode, no synchonization to DMA or NICAM is allowed. 2) The normal operation mode is 'Active' X: Depending on mode						

11.2.3. FIR-Parameter

The following data values (see Table 11–6) are to be transferred 8 bits at a time embedded LSB-bound in a 16 bit word. Note: These sequences must be obeyed. To change a coefficient set, the complete block FIR_REG_1 or FIR_REG_2 must be transmitted. The new coefficient set will be active without a load_reg routine.


Table 11–6: Loading sequence for FIR-coefficients

FIR_REG_1 0001 _{hex} (Channel 1: NICAM/FM2)						
No.	Symbol Name	Bits	Value			
1	NICAM/FM2_Coeff. (5)	8	see Table 11-7.			
2	NICAM/FM2_Coeff. (4)	8				
3	NICAM/FM2_Coeff. (3)	8				
4	NICAM/FM2_Coeff. (2)	8				
5	NICAM/FM2_Coeff. (1)	8				
6	NICAM/FM2_Coeff. (0)	8				

FIR_	REG_2 0005 _{hex} (Chanr	el 2: FI	M1/FM mono)
No.	Symbol Name	Bits	Value
1	* IMREG1 (8 LSBS)	8	04 HEX
2	* IMREG1 / IMREG2 (4 MSBs / 4 LSBs)	8	40 HEX
3	* IMREG2 (8 MSBs)	8	00 HEX
4	FM_Coef (5)	8	see Table 11–7.
5	FM_Coef (4)	8	
6	FM_Coef (3)	8	
7	FM_Coef (2)	8	
8	FM_Coef (1)	8	
9	FM_Coef (0)	8	
* IM	IREG_1/2: Two 12-bit off-se	t consta	ants

IMREG1 and IMREG2 are used to compensate for DC-offset, which are inherent to the FIR filter structure. IM-REG1 is valid for the FIR_REG_1, IMREG2 for FIR_REG_2. In the Table above, IMREG1= IMREG2 = 004. Due to the partitioning to 8 bit units, the values 04hex, 40hex, and 00hex arise.

Table 11-7: 8 bit FIR-coefficients (decimal integer) for MSP 3410 B

¹⁾ The 130 kHz coefficients are based on subcarriers, which are 7 dB below an existent main carrier.

11.2.4. DCO-Increments

For a chosen TV standard a corresponding set of 24-bit increments determining the mixing frequencies of the quadrature mixers, has to be written into the IC. In Table 11–8 some examples of DCO increments are listed. It is necessary to divide them up into low part and high part. The formula for the calculation of the increments for any chosen IF-Frequency is as follows:

INCR_{dez} = int(f/fs
$$\cdot$$
 2²⁴)

with: int = integer function f = IF-frequency in MHz

f_S = sampling frequency (18.432 MHz)

Conversion of INCR into hex-format and separation of the 12-bit low and high parts lead to the required increments. (DCO1_HI or _LO for channel 1, DCO2_HI or LO for channel 2).

Table 11-8: DCO increments for the MSP 3410 B; frequency in MHz, increments in Hex

	DCO1_LO 0093 _{hex} , DCO1_HI 009B _{hex} ; DCO2_LO 00A3 _{hex} , DCO2_HI 00AB _{hex}							
Frq. MHz	DCO_HI	DCO_LO	Frq. MHz	DCO_HI	DCO_LO			
4.5	3E8	000						
5.04 5.5 5.58 5.7421875	460 4C6 4D8 4FC	000 38E 000 0AA	5.76 5.85 5.94	500 514 528	000 000 000			
6.0 6.2 6.5 6.552	535 561 5A4 5B0	555 C71 71C 000	6.6 6.65 6.8	5BA 5C5 5E7	AAA C71 1C7			
7.02	618	000	7.2	640	000			
7.38	668	000	7.56	690	000			

11.3. Read Registers: Listing and Addresses

The following 8-bit parameters can be read out of the RAM of the MSP 3410 B; functionally they all belong to the NICAM decoding process; their addresses are listed in Table 11–9.

All transmissions take place in 16 bit words. The valid 8 bit data are the 8 LSBs of the received data word.

To enable correct switching to NICAM sound, at least the register C_AD_BITS must be read and evaluated by the CCU. Additional data bits and CIB bits, if supplied by the NICAM transmitter, as well as information about the signal quality can be obtained by reading the remaining registers.

Table 11-9: Addresses of read registers

Read Registers	HEX
C_AD_BITS	0023
FAWCT_IST	0025
ADD_BITS	0038
CIB_BITS	003E
CONC_CT	0058

11.4. Read Registers: Functions and Values

C_AD_BITS: NICAM operation mode control bits and A[0-2] of the additional data bits.

Format:

MSB		C_AD_BITS 0023 _{hex}					
7	6	5	4	3	2	1	0
A[2]	A[1]	A[0]	C4	С3	C2	C1	S

Important: "S" = Bit[0] indicates correct NICAM-synchronization (S=1). If S=0, no correct frame or sequence synchronization have been found yet and the read registers are not valid.

The operation mode is coded by C4-C1 as shown in Table 11–10.

ADD_BITS: Contains the remaining 8 of the 11 additional data bits. The additional data bits are yet not defined by the NICAM 728 system.

Format:

MSB ADD_BITS 0038 _{hex}					hex		LSB	
Ī	7	6	5	4	3	2	1	0
Ī	A[10]	A[9]	A[8]	A[7]	A[6]	A[5]	A[4]	A[3]

CIB_BITS: cib bits 1 and 2 (see NICAM 728 specifications)

Format:

MSB		CIB_BITS 003E _{hex}						
7	6	5	4	3	2	1	0	
х	х	х	х	х	х	CIB1	CIB2	

FAWCT_IST: The contents of this register give information on the actual position of the FAW-counter. For optimum NICAM performance, the value should be identical with or little below the value of 'FAW_SOLL'. If it reaches 0 the FP-software mutes and stops the NICAM-decoding automatically by searching for FAW synchronization once more.

CONC_CT: This register contains the actual number of bit errors of the previous 728 bit data frame. It may happen that in spite of acceptable FAWCT_IST the bit error rate result is too high for appropriate sound performance. In this case the CCU can switch to the analog FM-sound assumed to have the same program (Control bit C4).

Table 11–10: NICAM operation modes as defined by the EBU NICAM 728 specification

C4	СЗ	C2	C1	Operation Mode
0	0	0	0	Stereo sound (NICAMA/B), independent mono sound (FM1)
0	0	0	1	Two independent mono signals (NI-CAMA, FM1)
0	0	1	0	Three independent mono channels (NICAMA, NICAMB, FM1)
0	0	1	1	Data transmission only; no audio
1	0	0	0	Stereo sound (NICAMA/B), FM1 carries same channel
1	0	0	1	One mono signal (NICAMA). FM1 carries same channel as NICAMA
1	0	1	0	Two independent mono channels (NICAMA, NICAMB). FM1 carries same channel as NICAMA
1	0	1	1	Data transmission only; no audio
х	1	х	х	Unimplemented sound coding option (not yet defined by EBU NICAM 728 specification)

11.5. Sequences to Transmit Parameters and to Start Processing

For NICAM operation the following steps listed in 'NICAM_START, _READ and _Check' in Table 11–11 must be taken.

After having been switched on, the MSP has to be initialized by transmitting the parameters according to the LOAD_SEQ_1/2 of Table 11–11. To make the data active, the load routine LOAD_REG_1/2 must be activated.

For FM-stereo operation the evaluation of the identification signal must be performed. For positive identification check, the MSP 3410 B sound channels have to be switched corresponding to the detected operation mode.

Table 11–11: Sequences to initialize and start the MSP 3410 B

LOAD_SEQ_1/2: General Initialization, followed by LOAD_REG_1/2 Write into MSP 3410 B: 0. AD_CV 1. Audio_PLL In the case "NICAM only" operation, the

(only for NICAM mode)

(only for NICAM mode)

2. FAWCT_SOLL 3. FAW_ER_TOL 4. FIR_REG_1

5. FIR_REG_2 6. MODE_REG

7. DCO1_LO 8. DCO1_HI

9. DCO2_LO 10. DCO2_HI

11. start LOAD_REG_1/2 process;

FM-processing starts

In the case
"NICAM only" operation, the
steps 9. and 10. can be
skipped

Note: To ensure software compatibility to the MSP3400 B, before any modification of a demodulator parameter concerning an active output channel, this channel should be muted

NICAM_START: Start of the NICAM Software

Write into MSP 3410 B:

1. Start SEARCH_NICAM Process

2. Wait at least 0.5 s

NICAM_READ: Read NICAM specific information

Read out of MSP 3410 B:

1. FAWCT_IST

2. C_AD_BITS

3. CONC_CT

NICAM_CHECK: CCU checks for presence, operation mode and quality of NICAM signal

1. Evaluation of all three parameters in the CCU (see section 11.4.)

2. If necessary, switch the corresponding sound channels within the audio processing part

FM_IDENT_CHECK: Decoding of the identification signal

1. Evaluation of the stereo detection register (DFP register 0018_{hex}, high part)

2. If necessary, switch the corresponding sound channels within the audio processing part

LOAD_SEQ_1: Reinitialization of Channel 1 without affecting Channel 2, followed by LOAD_REG_1

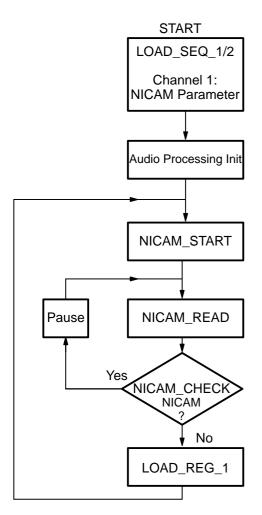
Write into MSP 3410 B:

1. FIR_REG_1 (6 · 8 bit)
2. MODE_REG (12 bit)
3. DCO1_LO (12 bit)

4. DCO1_HI

5. start LOAD_REG_1 process

PAUSE: Duration of "Pause" determines the repetition rate of the NICAM or the FM_IDENT-check


AUDIO PROCESSING INIT: Initialization of Audio Processing Part, which may be customer dependant (see section 12.)

11.6. Software Proposals for Multistandard TV-Sets

To familiarize the reader with the programming scheme of the MSP 3410 B demodulator part, three examples in the shape of flow diagrams are shown in the following sections.

11.6.1. Multistandard Including System B/G with NI-CAM/FM-Mono only

Fig. 11–1 shows a flow diagram for the CCU software, applied for the MSP 3410 B in a TV set, which facilitates NICAM and FM-mono sound. For the instructions, please refer to Table 11–11.

Fig. 11–1: CCU software flow diagram: Standard B/G/I NICAM/FM mono only

If the program is changed, resulting in another program within the Scandinavian System B/G no parameters of the MSP 3410 B have to be modified. To facilitate the check for NICAM the CCU has only to continue at the 'NICAM_START' instruction. During the 'NICAM_CHECK'

the MSP 3410 B must be switched to the FM-mono sound.

11.6.2. Multistandard Including System I with NI-CAM/FM-Mono only

This case is identical to the one above. The only difference consists in selecting the UK parameters for DCO1_LO/HI, DCO2_LO/HI and FIR_REG_1.

11.6.3. Multistandard Including System B/G with NI-CAM/FM-Mono and German DUAL FM

Fig. 11–3 shows a flow diagram for the CCU software, applied for the MSP 3410 B in a TV set, which facilitates all standards according to System B/G. For the instructions used in the diagram, please refer to Table 11–11.

After having switched on the TV-set and having initialized the MSP 3410 B (LOAD_SEQ_1/2), FM-mono sound is available.

Fig. 11–3 shows that to check for any stereo or bilingual audio information in channel 1, its parameter should be loaded with NICAM and FM2 parameters alternately (LOAD_SEQ_1). In the case of success the MSP 3410 B has to switch to the desired audio mode.

11.6.4. Satellite Mode

Fig. 11–2 shows the simple flow diagram to be used for the MSP 3410 B in a satellite receiver. For FM-mono operation the corresponding FM carrier should preferably be processed at the MSP-channel 2.

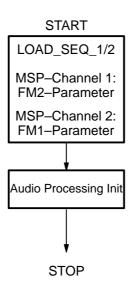


Fig. 11–2: CCU software flow diagram: SAT-mode

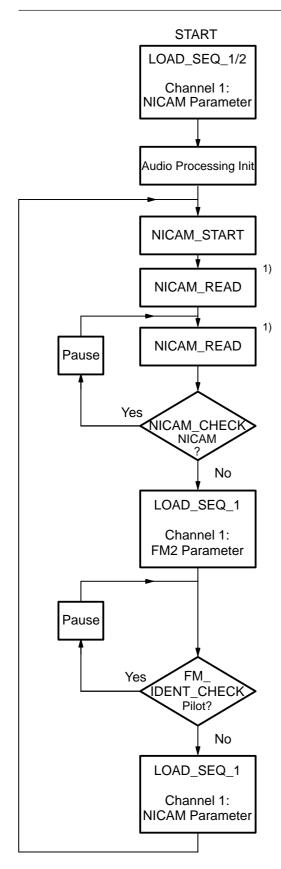


Fig. 11–3: CCU software flow diagram: Standard B/G with NICAM or FM stereo

11.6.5. Automatic Search Function for FM-Carrier Detection

The AM demodulation ability of the MSP 3410 B offers the possibility to calculate the "field strength" of the momentarily selected FM carrier which can be read out by the CCU. In SAT receivers this feature can be used to realize an automatic FM carrier search.

Therefore, the MSP has to be switched to AM-mode (Bit 8 of MODE_REG). The sound-IF frequency range must now be "scanned" in the MSP-channel 2 by means of the programmable quadrature mixer with an appropriate incremental frequency (i.e. 10 kHz).

After each incrementation there is a field strength value available at the DC level register FM1, which must be examined for relative maxima by the CCU. This results in either continuing search or switching the MSP back to FM demodulation mode.

During the search process the FIR_REG_2 must be loaded with the coefficient set "AUTOSEARCH", which enables small bandwidth resulting in appropriate field strength characteristics. The absolute field strength value (can be read out of "DC Level Readout FM1") also gives information on whether a main FM carrier or a subcarrier was detected, and as a practical consequence the FM bandwidth (FIR_REG_1/2) and the deemphasis (50 µs or adaptive) can be switched automatically. For a detailed description of the automatic search function please refer to the corresponding MUBI program.

11.6.6. Automatic Standard Detection

The AM demodulation ability of the MSP 3410 B enables also a simple method to decide between standard B/G (FM-carrier at 5.5 MHz) and standard I (FM-carrier at 6.0 MHz). It is achieved by tuning the MSP in the AM-mode to the two discrete frequencies and evaluating the field strength via the DC level register.

¹⁾ The first READ could result in incorrect values.

12. Programming the Audio Processing Part

12.1. Summary of the DSP Control Registers

Control registers are 16 bit wide. Transmissions via I²C

bus have to take place in 16 bit words. Single data entries are 8 bit. Some of the defined 16 bit words are divided into low and high byte, thus holding two different control entities. All control registers are readable.

Name	I ² C Bus Address	High/ Low	Adjustable Range, Operational Modes	Reset Mode
Volume loudspeaker channel	0000 _{hex}	Н	[+12 dB –94 dB, MUTE]	MUTE
Balance loudspeaker channel [L/R]	0001 _{hex}	Н	[0100% / 100% or 100% / 0100%]	100%/100%
Bass loudspeaker channel	0002 _{hex}	Н	[+12 dB –12 dB]	0 dB
Treble loudspeaker channel	0003 _{hex}	Н	[+12 dB –12 dB]	0 dB
Loudness loudspeaker channel	0004 _{hex}	Н	[0 dB +17 dB]	0 dB
Spatial effect loudspeaker channel	0005 _{hex}	Н	[OFF, ON]	OFF
Volume headphone channel	0006 _{hex}	Н	[+12 dB –77 dB, MUTE]	MUTE
Volume SCART channel	0007 _{hex}	Н	[00 _{hex} 7F _{hex}]	00 _{hex}
Loudspeaker channel source	0008 _{hex}	Н	[FM, NICAM, SCART, SBUS12, SBUS34, I ² S]	FM
Loudspeaker channel matrix		L	[SOUNDA, SOUNDB, STEREO]	SOUNDA
Headphone channel source	0009 _{hex}	Н	[FM, NICAM, SCART, SBUS12, SBUS34, I ² S]	FM
Headphone channel matrix		L	[SOUNDA, SOUNDB, STEREO]	SOUNDA
SCART channel source	000a _{hex}	Н	[FM, NICAM, SCART, SBUS12, SBUS34, I ² S]	FM
SCART channel matrix		L	[SOUNDA, SOUNDB, STEREO]	SOUNDA
I ² S channel source	000b _{hex}	Н	[FM, NICAM, SCART, SBUS12, SBUS34, I ² S]	FM
I ² S channel matrix		L	[SOUNDA, SOUNDB, STEREO]	SOUNDA
Quasi-peak detector source	000c _{hex}	Н	[FM, NICAM, SCART, SBUS12, SBUS34, I ² S]	FM (see note)
Prescale SCART	000d _{hex}	Н	[00 _{hex} 7F _{hex}]	00 _{hex}
Prescale FM	000e _{hex}	Н	[00 _{hex} 7F _{hex}]	00 _{hex}
FM matrix		L	[NO_MAT, GSTEREO, KSTEREO]	NO_MAT (see note)
Deemphasis FM	000f _{hex}	Н	[OFF, 50 μs, 75 μs, J17]	50 μs
Adaptive Deemphasis FM		L	[OFF, WP1]	OFF(s. note)
Prescale NICAM	0010 _{hex}	Н	[00 _{hex} 7F _{hex}]	00 _{hex}
Deemphasis NICAM	0011 _{hex}	Н	[OFF, J17]	J17 (s. note)
ACB Register (SCART Switches and DIG_OUT Pins)	0013 _{hex}	Н	Bits [70]	00 _{hex}
Beeper	0014 _{hex}	H/L	[00 _{hex} 7F _{hex}]/[00 _{hex} 7F _{hex}]	0/0 (s. note)
Identification Mode	0015 _{hex}	L	[B/G, M]	B/G
Special SCART Mode	0016 _{hex}		reserved for future use	_

Unused parts of the 16 bit registers must be zero.

Note: For future compatibility to new technical codes of the MSP3410 B or the MSP3400 B some coefficients concerning features not implemented or not changeable yet must nevertheless be initialized. Please consider the following compatibility restrictions:

- Quasi peak source must always be the same as the speaker source
- NICAM deemphasis switching facility not yet implemented, NICAM deemphasis must be switched on
- Panda1, if switched on, must always be activated together with 75 μs deemphasis
- Panda1 must be switched off if NICAM is selected
- FM dematrix must be switched off if Panda1 is selected
- Beeper off: set frequency to 0 and volume to 0;
- Beeper on: set frequency to 40_{hex} and set volume; beeper frequency not yet variable

Volume Loudspeaker Channel

Volume loudspeaker channel	0000 _{hex}	Н
+12 dB	0111 1111	7F _{hex}
+11 dB	0111 1110	7E _{hex}
+1 dB	0111 0100	74 _{hex}
0 dB	0111 0011	73 _{hex}
−1 dB	0111 0010	72 _{hex}
–77 dB	0010 0110	26 _{hex}
–94 dB	0001 0101	15 _{hex}
Mute	0000 0000 0001 0100	0 – 14 _{hex}

The highest positive 8 bit number yields in a maximum possible gain of 12 dB. Decreasing the volume register by 1 LSB decreases volume by 1 dB. The minimum volume without loudness is -77 dB. Together with loudness, the volume range can be increased by the actual loudness setting. Setting loudness to 17 dB, the lowest possible volume is -94 dB. Volume settings lower than the given minimum mute the output. With large scale input signals, positive volume settings may lead to signal clipping.

To prevent severe clipping effects with bass or treble boosts, the internal volume is automatically limited to a level where in combination with either bass or treble setting the amplification does not exceed 12 dB. For example: setting bass to +9 dB and treble to +5, the maximum possible volume is +3 dB. Values higher than +3 dB are internally limited to +3 dB.

Please consider that even if the loudspeaker or the headphone or both channels are not used (i.e. satellite receiver, video recorder), they must be initialized after reset according to the tables Volume Loudspeaker Channel shown above and Volume Headphone Channel on page 28.

Balance Loudspeaker Channel

Balance loudspeaker channel [L/R]	0001 _{hex}	Н
Left muted, Right 100%	0111 1111	7F _{hex}
Left 0.8%, Right 100%	0111 1110	7E _{hex}
Left 99.2%, Right 100%	0000 0001	01 _{hex}
Left 100%, Right 100%	0000 0000 RESET	00 _{hex}
Left 100%, Right 99.2%	1111 1111	FF _{hex}
Left 100%, Right 0.8%	1000 0010	82 _{hex}
Left 100%, Right muted	1000 0001	81 _{hex}

Positive balance settings reduce the left channel without affecting the right channel, negative settings reduce the right channel leaving the left channel at 100%. A step by 1 LSB decreases or increases the balance by about 0.8% (exact figure: 100/127).

Bass Loudspeaker Channel

Bass loudspeaker channel	0002 _{hex}	Н
+12 dB	0110 0000	60 _{hex}
+11 dB	0101 1000	58 _{hex}
+1 dB	0000 1000	08 _{hex}
0 dB	0000 0000 RESET	00 _{hex}
–1 dB	1111 1000	F8 _{hex}
-11 dB	1010 1000	A8 _{hex}
–12 dB	1010 0000	A0 _{hex}

With positive bass settings internal overflow may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set bass to a value that, in conjunction with volume, would result in an overall positive gain.

Treble Loudspeaker Channel

Treble loudspeaker channel	0003 _{hex}	Н
+12 dB	0110 0000	60 _{hex}
+11 dB	0101 1000	58 _{hex}
+1 dB	0000 1000	08 _{hex}
0 dB	0000 0000 RESET	00 _{hex}
–1 dB	1111 1000	F8 _{hex}
–11 dB	1010 1000	A8 _{hex}
–12 dB	1010 0000	A0 _{hex}

With positive treble settings internal overflow may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore it is not recommended to set treble to a value that in conjunction with volume would result in a overall positive gain.

Loudness Loudspeaker Channel

Loudness loudspeaker channel	0004 _{hex}	Н
+17 dB	0100 0100	44 _{hex}
+16 dB	0100 0000	40 _{hex}
+1 dB	0000 0100	04 _{hex}
0 dB	0000 0000 RESET	00 _{hex}

Loudness increases the volume of low and high frequency signals while keeping the amplitude of the 1 kHz reference frequency constant. The intended loudness has to be set according to the actual volume setting. Because loudness introduces gain, it is not recommended to set loudness to a value that in conjunction with volume would result in a overall positive gain.

Mode Loudness	00004 _{hex}	L
Normal (constant vol- ume at 1 kHz)	0000 0000 Reset	00 _{hex}
Super Bass (constant volume at 2 kHz)	0000 0100	04 _{hex}

By means of 'Mode Loudness', the corner frequency for bass amplification can be set to two different values. In Super Bass mode, the corner frequency is shifted up. The point of constant volume is shifted from 1 kHz to 2 kHz.

Spatial Effects Loudspeaker Channel

Spatial effect loud- speaker channel	0005 _{hex}	Н
OFF	0000 0000 RESET	00 _{hex}
Stereo Basewidth Enlargement (SBE) or Pseudo Stereo Effect (PSE)	0011 1111	3F _{hex}

The kind of spatial effect depends on the source mode. If the incoming signal is in mono mode, Pseudo Stereo Effect is active, for stereo signals Stereo Basewidth Enlargement is effective.

Volume Headphone Channel

Volume Headphone Channel	0000 _{hex}	Н
+12 dB	0111 1111	7F _{hex}
+11 dB	0111 1111	7E _{hex}
+1 dB	0111 0100	74 _{hex}
0 dB	0111 0011	73 _{hex}
-1 dB	0111 0010	72 _{hex}
–77 dB	0010 0110	26 _{hex}
Mute	0000 0000 0010 0101	0 – 25 _{hex}

Volume SCART Channel

Volume SCART channel	0007 _{hex} H
OFF	00 _{hex} RESET
0 dB gain (digital full scale (FS) to 2 V _{RMS} output)	40 _{hex}
+6 dB gain (–6 dBFS to 2 V _{RMS} output)	7F _{hex}

The highest positive 8 bit number yields in a maximum possible gain of 12 dB. Decreasing the volume register by 1 LSB decreases volume by 1 dB. The minimum volume is –77 dB. Lower volume settings mute the output. With large scale input signals, positive volume settings may lead to signal clipping.

Channel Source Modes

Loudspeaker channel source	0008 _{hex}	Н
Headphone channel source	0009 _{hex}	Н
SCART channel source	000a _{hex}	Н
I ² S channel source	000b _{hex}	н
Quasi-peak detector source	000c _{hex}	Н
FM	0000 0000 RESET	00 _{hex}
NICAM ¹⁾	0000 0001	01 _{hex}
SCART	0000 0010	02 _{hex}
SBUS12	0000 0011	03 _{hex}
SBUS34	0000 0100	04 _{hex}
I ² S	0000 0101	05 _{hex}

¹⁾ NICAM only possible if adaptive Deemphasis = off

Channel Matrix Modes (see also Table 4–1)

Loudspeaker channel matrix	0008 _{hex}	L
Headphone channel matrix	0009 _{hex}	L
SCART channel ma- trix	000a _{hex}	L
I ² S channel matrix	000b _{hex}	L
SOUNDA	0000 0000 RESET	00 _{hex}
SOUNDB	0001 0000	10 _{hex}
STEREO	0010 0000	20 _{hex}

SCART Prescale

Volume Prescale SCART	000d _{hex} H
OFF	00 _{hex} RESET
0 dB gain (2 V _{RMS} in- put to digital full scale)	19 _{hex}
+14 dB gain (400 mV _{RMS} input to digital full scale)	7F _{hex}

FM Prescale

Volume Prescale FM (normal FM mode)	000e _{hex} H
OFF	00 _{hex} RESET
Maximum Volume (28 kHz deviation ¹⁾ recommended FIR- bandwidth: 130 kHz)	7F _{hex}
Deviation 50 kHz ¹⁾ recommended FIR- bandwidth: 200 kHz	48 _{hex}
Deviation 75 kHz ¹⁾ recommended FIR- bandwidth: 200 or 280 kHz	30 _{hex}
Deviation 150 kHz ¹⁾ recommended FIR- bandwidth: 380 kHz	18 _{hex}
Maximum deviation 192 kHz ¹⁾ recommended FIR- bandwidth: 380 kHz	13 _{hex}
Prescale for adaptive deemphasis WP1 recommended FIR- bandwidth: 130 kHz	10 _{hex}

Volume Prescale FM (High Deviation Mode)	000e _{hex}	Н
Deviation 150 kHz ¹⁾ recommended FIR-bandwidth: 380 kHz	0011 0000	30 _{hex}
Maximum deviation 384 kHz ¹⁾ recommended FIR- bandwidth: 500 kHz	0001 0011	13 _{hex}

For the **High Deviation Mode**, the FM prescaling values can be used in the range between 13_{hex} to 30_{hex} . Please consider the internal reduction of 6 dB for this mode. The FIR-bandwidth should be selected to 500 kHz.

FM Matrix Modes (see also Table 4-1)

FM matrix	000e _{hex}	L
NO MATRIX	0000 0000 RESET	00 _{hex}
GSTEREO	0000 0001	01 _{hex}
KSTEREO	0000 0010	02 _{hex}

NO_MATRIX is used for terrestrial mono or satellite stereo sound. GSTEREO dematrixes (L+R, 2R) to (2L, 2R) and is used for German dual carrier stereo system (Standard B/G). KSTEREO dematrixes (L+R, L-R) to (2L, 2R) and is used for the Korean dual carrier stereo system (Standard M).

FM Fixed Deemphasis

Deemphasis FM	000f _{hex}	Н
50 μs	0000 0000 RESET	00 _{hex}
75 μs	0000 0001	01 _{hex}
J17	0000 0100	04 _{hex}
OFF	0011 1111	3F _{hex}

FM Adaptive Deemphasis

Adaptive Deemphasis FM	000f _{hex}	L
OFF	0000 0000 RESET	00 _{hex}
WP1	0011 1111	3F _{hex}

Must be set to 'OFF' in case of NICAM or dual carrier stereo (German or Korean). If 'ON' FM fixed deemphasis must be set to 75 μs and FM matrix mode must be set to 'NO MATRIX'.

NICAM Prescale

Volume Prescale NICAM	0010 _{hex} H
OFF	00 _{hex} RESET
0 dB gain	20 _{hex}
+12 dB gain	7F _{hex}

NICAM Deemphasis

(not yet switchable, see note in section 12.1.)

Deemphasis NICAM	0011 _{hex}	Н
J17	0000 0000 RESET	00 _{hex}
OFF	0011 1111	3F _{hex}

¹⁾ Given deviations will result in internal digital full scale signals. Appropriate clipping headroom has to be set by the customer. This can be done by decreasing the listed values by a specific factor.

ACB Register (see Fig. 4–3), Definition of the SCART-Switches and DIG_CTR_OUT Pins

ACB Register	0013 _{hex}	н
DFP In Selection SCART1_IN MONO_IN SCART2_IN SCART3_IN	xxxx xx00 xxxx xx01 xxxx xx10 xxxx xx11	RESET
SCART1_OUT Selection SCART3_IN SCART2_IN MONO_IN DA_SCART	xxxx 00xx xxxx 01xx xxxx 10xx xxxx 11xx	RESET
SCART2_OUT Selection DA_SCART SCART1_IN MONO_IN	xx00 xxxx xx01 xxxx xx10 xxxx	RESET
DIG_CTR_OUT1 low high	x0xx xxxx x1xx xxxx	RESET
DIG_CTR_OUT2 low high	0xxx xxxx 1xxx xxxx	RESET

RESET: The RESET state is taken at the time of the first write transmission on the control bus to the audio processing part (DFP). By writing to the ACB register first, the RESET state can be redefined.

Note: If "MONO_IN" is selected at the DFP_IN selection, the channel matrix mode of the corresponding output channel(s) must be set to "sound A".

Beeper

(Frequency not yet variable, see note in section 12.1.)

Beeper Volume	0014 _{hex}	Н
OFF	0000 0000 RESET	00 _{hex}
Maximum Volume (full digital scale DFS)	1111 1111	7F _{hex}

Beeper Frequency	0014 _{hex}	L
Lowest Frequency (16 Hz)	0000 0001	01 _{hex}
about 1 kHz	0100 0000	40 _{hex}
Maximum Frequency (4 kHz)	1111 1111	FF _{hex}

A squarewave beeper can be added to the loudspeaker channel and the headphone channel. The addition point is just before the volume adjustment.

Identification Mode

Identification Mode	0015 _{hex}	L
Standard B/G (German Stereo)	0000 0000 RESET	00 _{hex}
Standard M (Korean Stereo)	0000 0001	01 _{hex}
Reset of Ident-Filter	0011 1111	3F _{hex}

To shorten the response time of the identification algorithm after a program change between two FM-stereo capable programs, the reset of ident-filter can be applied.

Sequence:

- 1. Program change
- 2. Reset ident-filter
- 3. Set identification mode back to standard B/G or M
- 4. Wait approx. 1 sec.
- 5. Read stereo detection register

12.2. Exclusions

In general, all functions can be switched independently of the others. Some exceptions exist: 1. NICAM cannot be processed simultaneously to the FM2 channel. 2. If the adaptive deemphasis is activated (Reg. $000f_{hex}$ L), the NICAM channels and the identification register (0018_{hex} H) are no longer valid. The FM fixed deemphasis (Reg. $000f_{hex}$ H) must be set to 75 μ s and the FM matrix mode (Reg $000e_{hex}$ H) must be set to 'NO MATRIX'.

12.3. Summary of Readable Registers

All readable registers are 16 bit wide. Transmissions via I^2C bus have to take place in 16 bit words. Single data entries are 8 bit. Some of the defined 16 bit words are divided into low and high byte, thus holding two different control entities.

These registers are not writable.

Name	Address	High/Low	Output Range	
Stereo detection register	0018 _{hex}	Н	[80 _{hex} 7F _{hex}]	3 bit two's complement
Quasi peak readout left	0019 _{hex}	H&L	[00 _{hex} 7FFF _{hex}] 1	16 bit binary
Quasi peak readout right	001a _{hex}	H&L	[00 _{hex} 7FFF _{hex}] 1	16 bit binary
DC level readout FM1	001b _{hex}	H&L	[00 _{hex} 7FFF _{hex}] 1	16 bit binary
DC level readout FM2	001c _{hex}	H&L	[00 _{hex} 7FFF _{hex}] 1	16 bit binary
DFP software version ¹⁾	001e _{hex}	Н	[00 _{hex} FF _{hex}]	
FP software version ¹⁾		L	[00 _{hex} FF _{hex}]	
MSP family code	001f _{hex}	Н	[00 _{hex} FF _{hex}]	
MSP hardware version ¹⁾		L	[00 _{hex} FF _{hex}]	

¹⁾ Only for internal use. Subject to change without notice!

Stereo Detection Register

Stereo Detection Register	0018 _{hex} H
Stereo Mode	Reading (two's complement)
MONO	near zero
STEREO	positive value (ideal reception: 7F _{hex})
BILINGUAL	negative value (ideal reception: 80 _{hex)}

Quasi Peak Detector

Quasi peak readout left	0019 _{hex}	H+L
Quasi peak readout right	001a _{hex}	H+L
Quasi peak readout	[0 _{hex} 7FFF _{hex}] values are 16 bit binary	

The quasi peak readout register can be used to read out the quasi peak level of any input source, in order to adjust all inputs to the same normal listening level. The refresh rate is 32 kHz. The feature is based on a filter time constant:

attack-time: 1.3 ms decay-time: 37 ms

DC Level Register

DC level readout FM1	001b _{hex} H+L
DC level readout FM2	001c _{hex} H+L
DC Level	[0 _{hex} 7FFF _{hex}] values are 16 bit binary

The DC level register measures the DC component of the incoming FM signals (FM1 and FM2). This can be used for seek functions in satellite receivers and for IF FM frequencies fine tuning. For further processing, the DC content of the demodulated FM signals is suppressed. The time constant τ , defining the transition time of the DC Level Register, is approximately 28 ms.

DFP Software Version

DFP software version	001e _{hex} H
DFP software version number	[00 _{hex} FF _{hex}]

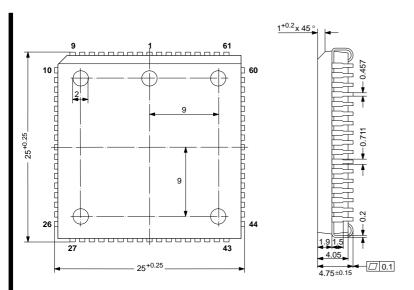
FP Software Version

FP software version	001e _{hex} L
FP software version number	[00 _{hex} FF _{hex}]

MSP Family Code

MSP Family Code	001f _{hex}	Н
MSP 3400 C	0000 0000	
MSP 3400 B	0000 1010	
MSP 3410 B	0000 1010	

By means of the MSP-Family Code, the control processor is able to decide whether or not NICAM-controlling should be accomplished.


MSP Hardware Version

 /ISP hardware version	001f _{hex} L
 MSP technical code number (TC) ¹⁾	[00 _{hex} FF _{hex}]

¹⁾ TC27 denotes the version F7

13. Specifications

13.1. Outline Dimensions

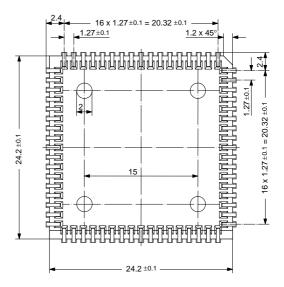


Fig. 13–1: 68-Pin Plastic Leaded Chip Carrier Package (PLCC68) Weight approximately 4.8 g Dimensions in mm

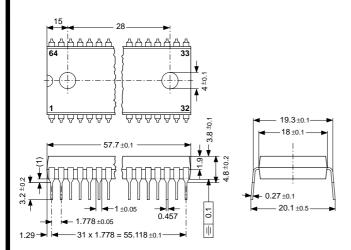


Fig. 13–2: 64-Pin Plastic Shrink Dual Inline Package (PSDIP64) Weight approximately 9.0 g Dimensions in mm

13.2. Pin Connections and Descriptions

NC = not connected; leave vacant LV = if not used, leave vacant

S.T.B. = shorted to BAGNDI if not used DVSS: if not used, connect to DVSS

X = obligatory; connect as described in circuit diagram

AHVSS: connect to AHVSS

Pin PLCC	No.	Connection (if not used)	Pin Name	Туре	Short Description
68-pin	64-pin	(ii flot useu)			
1	16	LV	S_ID	OUT	SBUS ident
2	1		NC		Not connected
3	15	LV	S_DA_IN	IN	SBUS data input
4	14	LV	I ² S_DA_IN	IN	I ² S data input
5	13	LV	I ² S_DA_OUT	OUT	I ² S data output
6	12	LV	I ² S_WS	OUT	I ² S wordstrobe
7	11	LV	I ² S_CL	OUT	I ² S clock
8	10	Х	I ² C_DA	I/OUT	I ² C data
9	9	X	I ² C_CL	IN	I ² C clock
10	8	DVSS	D_CTR_IN	IN	for future use
11	7	X	STANDBYQ	IN	Standby (low-active)
12	6	X	ADR_SEL	IN	Control bus address select
13	5	LV	D_CTR_OUT0	OUT	Digital control output0
14	4	LV	D_CTR_OUT1	OUT	Digital control output1
15	3	DVSS	CW_DA	IN	Pay-TV control data
16	2	DVSS	CW_CL	IN	Pay-TV control clock
17	1		NC		Not connected
18	1	LV	AUD_CL_OUT	OUT	Audio clock output
19	64	DVSS	DMA_SYNC	IN	DMAC-sync: signal
20	63	Χ	XTAL_OUT	OUT	Crystal oscillator
21	62	Х	XTAL_IN	IN	Crystal oscillator
22	61	Χ	TESTIO1	IN	Test pin 1
23	60	LV	ANA_IN2+	IN	IF input 2 (if ANA_IN1+ is used only, connect to AVSS with 50 pF Capacitor)
24	59	LV	ANA_IN-	IN	IF common
25	58	LV	ANA_IN1+	IN	IF input 1
26	57	Х	AVSUP		Analog power supply +5 V
27	56	Х	AVSS		Analog ground
28	55	S.T.B.	MONO_IN	IN	Mono input

Pin	No.	Connection	Pin Name	Туре	Short Description
PLCC 68-pin	PSDIP 64-pin	(if not used)			
29	54	Х	VREFTOP		Reference voltage IF A/D converter
30	53	S.T.B.	SC1_IN_R	IN	Scart input1 in, right
31	52	S.T.B.	SC1_IN_L	IN	Scart input1 in, left
32	51	AHVSS	ASG1		Analog Shield Ground1
33	50	S.T.B.	SC2_IN_R	IN	Scart input2 in, right
34	49	S.T.B.	SC2_IN_L	IN	Scart input 2 in, left
35	48	AHVSS	ASG2		Analog Shield Ground2
36	47	S.T.B.	SC3_IN_R	IN	Scart input3 in, right
37	46	S.T.B.	SC3_IN_L	IN	Scart input3 in, left
38	-	AHVSS or LV	NC		Not connected
39	45	Х	BAGNDI		Buffered AGNDC
40	44	Х	PDMC2		Capacitor to BAGNDI
41	43	Х	PDMC1		Capacitor to BAGNDI
42	42	Х	AGNDC		Analog reference voltage high voltage part
43	41	Х	AHVSS		Analog ground
44	40	Х	CAPL_M		Volume capacitor MAIN
45	39	Х	AHVSUP		Analog power supply 8.0 V
46	38	Х	CAPL_A		Volume capacitor AUX
47	37	LV	SC1_OUT_L	OUT	Scart output1, left
48	36	LV	SC1_OUT_R	OUT	Scart output1, right
49	35	Х	VREF1		Reference ground1 high voltage part
50	34	LV	SC2_OUT_L	OUT	Scart output 2, left
51	33	LV	SC2_OUT_R	OUT	Scart output 2, right
52	_	AHVSS	ASG3		Analog Shield Ground3
53	32	Х	C_DACS_L		SCART output capacitor to ground
54	31	X	C_DACS_R		SCART output capacitor to ground
55	30	X	TESTIO2	IN	Test pin 2
56	29	LV	DACM_L	OUT	Analog output MAIN, left
57	28	LV	DACM_R	OUT	Analog output MAIN, right
58	27	Х	VREF2		Reference ground2 high voltage part

Pin	No.	Connection	Pin Name	Туре	Short Description
PLCC 68-pin	PSDIP 64-pin	(if not used)			
59	26	LV	DACA_L	OUT	Analog output AUX, left
60	25	LV	DACA_R	OUT	Analog output AUX, right
61	24	Х	RESETQ	IN	Power-on-reset
62	23	LV	N_DA	OUT	NBUS data
63	22	LV	N_CL	OUT	NBUS clock
64	21	LV	FRAME	OUT	NBUS frame
65	20	LV	S_DA_OUT	OUT	SBUS data output (FM/NICAM-test)
66	19	Х	DVSS		Digital ground
67	18	Х	DVSUP		Digital power supply +5 V
68	17	LV	S_CL	OUT	SBUS clock

13.3. Pin Configurations

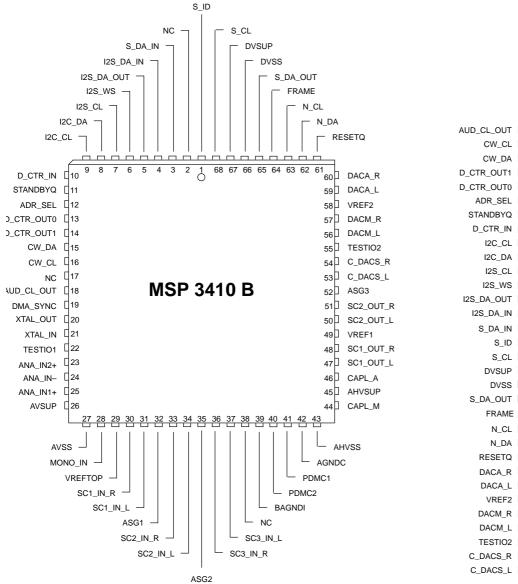


Fig. 13-3: 68-pin PLCC package

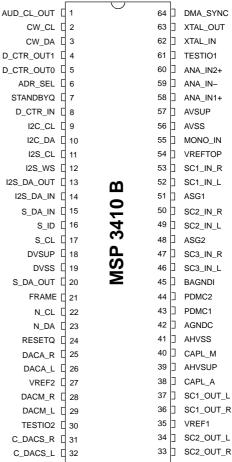
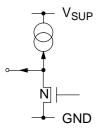
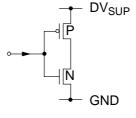
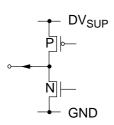
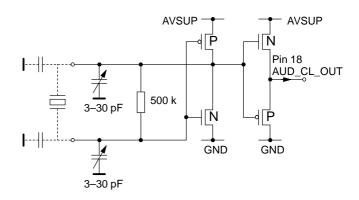




Fig. 13-4: 64-pin PSDIP package


13.4. Pin Circuits (pin numbers refer to PLCC68 package)


Fig. 13–5: Input Pins 3, 4 (S_DA_IN, I²S_DA_IN)

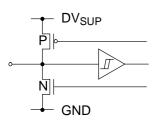
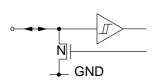

Fig. 13–9: Input Pins 10, 11, 12, 15, 16, 22, and 55 (D_CTR_IN, STANDBYQ, ADR_SEL, CW_DA, CW_CL, TESTIO1, TESTIO2)

Fig. 13–6: Output Pins 1, 5, 13, 14, 64, 65, and 68 (S_ID, I²S_DA_OUT, D_CTR_OUT0/1, FRAME, S_DA_OUT, S_CL)


Fig. 13–10: Output Pins 18 and 20; Input Pin 21 (AUD_CL_OUT, XTALOUT; XTALIN)

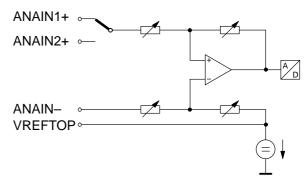

Fig. 13–7: Output Pins 6, 7, 62, and 63 (I²S_WS, I²S_CL, N_DA, N_CL)

Fig. 13-11: Input Pin 19 (DMA_SYNC)

Fig. 13–8: Input/Output Pins 8 and 9 (I²C_DA, I²C_CL)

Fig. 13–12: Input Pins 23–25 and 29 (ANA IN2+, ANA IN–, ANA IN1+, VREFTOP)

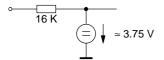
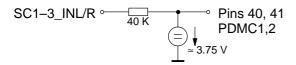
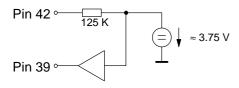
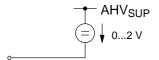
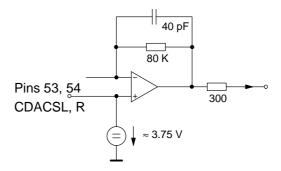



Fig. 13-13: Input Pin 28 (MONO_IN)

Fig. 13–14: Input Pins 30, 31, 33, 34, 36, and 37 $(SC1-3_N_L/R)$

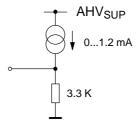

Fig. 13-15: Pins 39 and 42 (BAGNDI, AGNDC)

Fig. 13–16: Capacitor Pins 44 and 46 (CAPL_M, CAPL_A)

Fig. 13–17: Output Pins 47, 48, 50, 51, 53, and 54 (SC_1/2_OUT_L/R, C_DACS_L/R)

Fig. 13–18: Output Pins 56, 57, 59, and 60 (DACA_L/R, DACM_L/R)

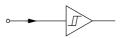


Fig. 13–19: Input Pin 61 (RESETQ)

13.5. Electrical Characteristics

13.5.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient Operating Temperature	_	0	70	°C
T _S	Storage Temperature	_	-40	125	°C
V _{SUP1}	First Supply Voltage	AHVSUP	-0.3	9.0	V
V _{SUP2}	Second Supply Voltage	DVSUP	-0.3	6.0	V
V _{SUP3}	Third Supply Voltage	AVSUP	-0.3	6.0	V
dV _{SUP23}	Voltage between AVSUP and DVSUP	AVSUP, DVSUP	-0.5	0.5	V
P _{TOT}	Chip Power Dissipation PLCC68 without Heat Spreader PSDIP64 without Heat Spreader	AHVSUP, DVSUP, AVSUP		1100 1300	mW mW
V _{Idig}	Input Voltage, all Digital Inputs		-0.3	V _{SUP2} +0.3	V
I _{Idig}	Input Current, all Digital Pins	_	-20	+20	mA ¹⁾
V_{lana}	Input Voltage, all Analog Inputs	SCn_IN_s, ²⁾ MONO_IN	-0.3	V _{SUP1} +0.3	V
V _{Idig}	Input Voltage, all Digital Inputs		-0.3	V _{SUP2} +0.3	V
I _{lana}	Input Current, all Analog Inputs	SCn_IN_s, ²⁾ MONO_IN	- 5	+5	mA ¹⁾
I _{Oana}	Output Current, all SCART Outputs	SCn_OUT_s ²⁾	3), 4)	3), 4)	
I _{Oana}	Output Current, all Analog Outputs except SCART Outputs	DACp_s ²⁾	3)	3)	
I _{Cana}	Output Current, other pins connected to capacitors	PDMCs, ²⁾ C_DACS_s, ²⁾ CAPL_p, ²⁾ AGNDC, BAGNDI	3)	3)	

¹⁾ positive value means current flowing into the circuit

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

^{2) &}quot;n" means "1", "2" or "3", "s" means "L" or "R", "p" means "M" or "A"

³⁾ The Analog Outputs are short circuit proof with respect to First Supply Voltage and Ground.

⁴⁾ Total chip power dissipation must not exceed absolute maximum rating.

13.5.2. Recommended Operating Conditions (at T_A = 0 to 70 $^{\circ}C)$

Symbol	Parameter	Pin Name	Min.	Nom.	Max.	Unit
V _{SUP1}	First Supply Voltage	AHVSUP	7.6	8.0	8.4	V
V _{SUP2}	Second Supply Voltage	DVSUP	4.75	5.0	5.25	V
V _{SUP3}	Third Supply Voltage	AVSUP	4.75	5.0	5.25	V
V _{REIL}	RESET Input Low Voltage	RESETQ			0.8	V
V _{REIH}	RESET Input High Voltage		2.4			V
t _{REIL}	RESET Low Time after DVSUP Stable and Oscillator Startup		5			μs
V _{DMAIL}	Sync Input Low Voltage	DMA_SYNC			a)	V
V _{DMAIH}	Sync Input High Voltage		b)			V
t _{DMA}	Sync Input Frequency			18.0		kHz
R _{DMA}	Sync Input Clock High-Level Time		500			ns
V _{DIGIL}	Digital Input Low Voltage	D_CTR_IN, CW_DA, CW_CL,			0.8	V
V _{DIGIH}	Digital Input High Voltage	STANDBYQ, ADR_SEL, TESTIO1, TESTIO2,	2.4			V
t _{STBYQ1}	STANDBYQ Setup Time before Turn-off of Second Supply Voltage	STANDBYQ, DVSUP	1			μs
I ² C-Bus Red	commendations					
V _{IMIL}	I ² C-BUS Input Low Voltage	I ² C_CL,			1.5	V
V _{IMIH}	I ² C-BUS Input High Voltage	I ² C_DA	3.0			V
f _{IM}	I ² C-BUS Frequency	I ² C_CL			1.0	MHz
t _{I2C1}	I ² C START Condition Setup Time	I ² C_CL,	120			ns
t _{I2C2}	I ² C STOP Condition Setup Time	I ² C_DA	120			ns
t _{I2C3}	I ² C-Clock Low Pulse Time	I ² C_CL	500			ns
t _{I2C4}	I ² C-Clock High Pulse Time		500			ns
t _{I2C5}	I ² C-Data Setup Time Before Rising Edge of Clock	I ² C_CL, I ² C_DA	55			ns
t _{I2C6}	I ² C-Data Hold Time after Falling Edge of Clock		55			ns
t _{12C7}	I ² C-Slew Rate at I ² C-Clock = 1 MHz		50			V/µs

a) $\frac{\text{DVSUP}}{2} - 300 \text{ mV}$

b) $\frac{\text{DVSUP}}{2} + 300 \text{ mV}$

Symbol	Parameter	Pin Name	Min.	Nom.	Max.	Unit
I ² S-Bus Rec	ommendations		_			
V _{I2SIL}	I ² S-Data Input Low Voltage	I ² S_DA_IN			0.6	V
I _{I2SIL}	I ² S-Data Input Low Current		0.9	1.7	3.2	mA
V _{I2STRIG}	I ² S-Data Input Trigger Voltage		0.8		1.2	V
t _{I2S1}	I ² S-Data Input Setup Time before Rising Edge of Clock	I ² S_DA_IN, I ² S_CL	20			ns
t _{I2S2}	I ² S-Data Input Hold Time after Falling Edge of Clock		0			ns
V _{I2SIDL}	I ² S-Input Low Voltage when MSP 3410 B in I2S-Slave-Mode	I ² S_CL, I ² S_WS			0.8	V
V _{I2SIDH}	I ² S-Input High Voltage when MSP 3410 B in I2S-Slave-Mode		2.4			V
f _{I2SCL}	I ² S-Clock Input Frequency when MSP 3410 B in I2S-Slave-Mode	l ² S_CL		1.024		MHz
R _{I2SCL}	I ² S-Clock Input Ratio when MSP 3410 B in I2S-Slave-Mode		0.9		1.1	MHz
f _{I2SWS}	I ² S-Wordstrobe Input Frequency when MSP 3410 B in I2S-Slave-Mode	I ² S_WS		32.0		kHz
t _{I2SWS1}	I ² S-Wordstrobe Input Setup Time before Rising Edge of Clock when MSP 3410 B in I2S-Slave-Mode	I ² S_WS, I ² S_CL	60			ns
t _{I2SWS2}	I ² S-Wordstrobe Input Hold Time after Falling Edge of Clock when MSP 3410 B in I2S-Slave-Mode		0			ns
V _{SBUSIL}	SBUS-Data Input Low Voltage	S_DA_IN			0.6	V
I _{SBUSIL}	SBUS-Data Input Low Current		0.9	1.7	3.2	mA
V _{SBUSTRIG}	SBUS-Data Input Trigger Voltage		0.8		1.2	V
t _{SBUS1}	SBUS-Data Input Setup Time before Rising Edge of Clock	S_DA_IN, S_CL	10			ns
t _{SBUS2}	SBUS-Data Input Hold Time after Falling Edge of Clock		0			ns

Symbol	Parameter	Pin Name	Min.	Nom.	Max.	Unit
Crystal Rec	ommendations for Master-Slave Applications	ations	•			
f _P	Parallel Resonance Frequency at 12 pF Load Capacitance			18.432		MHz
f _{TOL}	Accuracy of Adjustment		-20		+20	ppm
D _{TEM}	Frequency Variation versus Temperature		-20		+20	ppm
R _R	Series Resistance			8	25	Ω
C ₀	Shunt (Parallel) Capacitance			6.2	7.0	pF
C ₁	Motional (Dynamic) Capacitance		19	24		fF
Load Capac	citance Recommendations for Master-S	lave Applications				
C _L	External Load Capacitance ¹⁾	XTAL_IN, XTAL_OUT	PSDIP PLCC 3.3		1.5	pF pF
f _{CL}	Required Open Loop Clock Frequency (T _{amb} = 25 °C)		18.431		18.433	MHz
Crystal Rec	ommendations for FM / NICAM Applicat	tions (No Master-S	lave Mode	possible)		
f _P	Parallel Resonance Frequency at 12 pF Load Capacitance			18.432		MHz
f _{TOL}	Accuracy of Adjustment		-30		+30	ppm
D _{TEM}	Frequency Variation vs Temp.		-30		+30	ppm
R _R	Series Resistance			8	25	Ω
C ₀	Shunt (Parallel) Capacitance			6.2	7.0	pF
0	Motional (Dynamic) Capacitance		15			fF
C ₁	Wellerial (Byllarille) Capacitaries					
	citance Recommendations for FM / NICA	AM Applications (N	o Master-S	lave Mode	e possible)	
	, , ,	AM Applications (N XTAL_IN, XTAL_OUT	o Master-S PSDIP PLCC	lave Mode	possible)	pF pF
Load Capac	citance Recommendations for FM / NICA	XTAL_IN,	PSDIP		<u> </u>	pF
Load Capad	External Load Capacitance ¹⁾ Required Open Loop Clock	XTAL_IN, XTAL_OUT	PSDIP PLCC		1.5	pF pF

¹⁾ External capacitors at each crystal pin to ground are required. They are necessary to tune the open-loop frequency of the internal PLL and to stabilize the frequency in closed-loop operation. The higher the capacitors, the lower the clock frequency results. The nominal free running frequency should match 18.432 MHz as closely as possible. Due to different layouts of customer PCBs the matching capacitor size should be defined in the application. The suggested values are figures based on experience with various PCB layouts.

Symbol	Parameter	Pin Name	Min.	Nom.	Max.	Unit
Analog Input	and Output Recommendations		•			
C _{AGNDC}	AGNDC-Filter-Capacitor	AGNDC	-20%	3.3	+20%	μF
	Ceramic Capacitor in Parallel		-20%	100	+20%	nF
C _{PDM}	PDM-Capacitor between PDMCx and BAGNDI1 (Low Loss type, e.g. ceramic type1)	PDMC1, PDMC2, BAGNDI1	-5%	470	+5%	pF
C _{inSC}	DC-Decoupling Capacitor in front of SCART Inputs	SCn_IN_s ²⁾	-20%	330	+20%	nF
V _{inSC}	SCART Input Level				2.0	V _{RMS}
V _{inMONO}	Input Level, Mono Input	MONO_IN			2.0	V _{RMS}
C _{DACS}	Filter Capacitor for SCART DACs	C_DACS_s ²⁾	-10%	390	+10%	pF
R _{LSC}	SCART Load Resistance	SCn_OUT_s ²⁾	10			kΩ
C _{LSC}	SCART Load Capacitance				500	pF
C _{VMA}	Main/AUX Volume Capacitor	CAPL_M, CAPL_A		10		μF
C _{FMA}	Main/AUX Filter Capacitor	DACM_s, DACA_s ²⁾	-10%	1	+10%	nF
²⁾ "n" means	"1", "2" or "3", "s" means "L" or "R", "p"	' means "M" or "A"	'			

Symbol	Parameter	Pin Name	Min.	Nom.	Max.	Unit
Recommend	dations for Analog Sound IF Input Sign	al	•			
V _{IF}	Analog Input Range (Complete Sound IF, 0 – 9 MHz)	ANA_IN1+, ANA_IN2+,	0.14	0.8	3 ⁴⁾	Vpp
R _{FMNI}	Ratio: NICAM Carrier/FM Carrier (unmodulated carriers) ³⁾ BG: I:	ANA_IN-	-17 -20	-7 -10	0 0	dB dB
R _{FM}	Ratio: FM-Main/FM-Sub Satellite			7		dB
R _{FM1/FM2}	Ratio: FM1/FM2 German FM-System			7		dB
R _{FC}	Ratio: Main FM Carrier/Color Carrier		15	-	-	dB
R _{FV}	Ratio: Main FM Carrier/Luma Components		15	-	-	dB
PR _{IF}	Passband Ripple		_	_	±2 dB	dB
SUP _{HF}	Suppression of Spectrum Above 9.0 MHz		15		-	dB
FM _{MAX}	Maximum FM-Deviation normal mode high deviation mode				apprx ±192 apprx ±360	kHz

 $^{^{3)}}$ Measuring modulated NICAM carriers, the amplitude of the highest frequency components are about 5–6 dB lower than the unmodulated carrier. The MSP 3410 B will work down to –23 dB (BG) and –25 dB (I) respectively.

⁴⁾ Under normal conditions of FM/NICAM or FM1/FM2 ratio. For signals above 1.4 Vpp, overflow of the AD converter may result. Due to the robustness of the internal processing, the IC works up to and even more than 3 Vpp, if norm conditions of FM/NICAM or FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N-ratio of about 10 dB may appear.

13.5.3. Characteristics

at T_A = 0 to 70 $^{\circ}C,\,f_{CLOCK}$ = 18.432 MHz, T_J = Junction Temperature

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
fclock	Clock Input Frequency	XTAL_IN		18.432		MHz	
D _{CLOCK}	Clock High to Low Ratio		45		55	%	
t _{JITTER}	Clock Jitter (Verification not provided in Production test)				50	ps	
V _{xtalDC}	DC-Voltage Oscillator			2.5		V	
t _{Startup}	Oscillator Startup Time at VDD Slew-rate of 1 V/1 μs	XTAL_IN, XTAL_OUT		0.4	1.0	ms	
I _{SUP1A}	First Supply Current (active) Analog Volume for Main and Aux at 0dB Analog Volume for Main and Aux at -30 dB at $T_j = 27$ °C	AHVSUP	11 7.5	15.8 11.0	25.0 17.4	mA mA	f = 18.432 MHz AHVSUP = 8 V DVSUP = 5 V AVSUP = 5 V
I _{SUP2A}	Second Supply Current (active)	DVSUP	100	115	150	mA	f = 18.432 MHz DVSUP = 5 V
I _{SUP3A}	Third Supply Current (active)	AVSUP		25		mA	f = 18.432 MHz AVSUP = 5 V
I _{SUP1S}	First Supply Current (standby mode) at T _j = 27 °C	AHVSUP	4.9	7.0	11.1	mA	STANDBYQ = low VSUP = 8 V
V _{APUAC}	Audio Clock Output AC Voltage	AUD_CL_OUT	1.2			V _{pp}	load = 40 pF
V _{APUDC}	Audio Clock Output DC Voltage		0.4		0.6	V _{SUP1}	I _{max} = 0.2 mA
I _{APUOL}	Audio Clock Output Low Current				-2	mA	V _{APUDC} – V _{APUAC}
I _{APUOH}	Audio Clock Output High Current		2			mA	V _{APUDC} + V _{APUAC}
f _{APU}	Audio Clock Output Frequency			18432		kHz	NICAM-mode, PLL closed
t _{APU}	Audio Clock Output Transition Time				15	ns	Load = 30 pF
V _{DCTROL}	Digital Output Low Voltage	D_CTR_OUT0 D_CTR_OUT1			0.4	V	I _{DDCTR} = 1 mA
V _{DCTROH}	Digital Output High Voltage	D_CTK_OUT	4.0			V	I _{DDCTR} = -1 mA
V _{NBOL}	NBUS Output Low Voltage	N_CL, N_DA.			0.4	V	I _{DDNB} = 1 mA
V _{NBOH}	NBUS Output High Voltage	FRAME	4.0			V	I _{DDNB} = -1 mA
V _{IMOL}	I ² C-Data Output Low Voltage	I ² C_DA			0.4	V	I _{MOL} = 3 mA
I _{IMOL}	I ² C-Data Output High Current				1	μА	V _{IMOH} = 5 V
t _{IMOL1}	I ² C-Data Output Hold Time after Falling Edge of Clock	I ² C_DA, I ² C_CL	15			ns	
t _{IMOL2}	I ² C-Data Output Setup Time before Rising Edge of Clock		100			ns	f _{IM} = 1 MHz DVSUP = 5 V
V _{SBOL}	SBUS-Data Output Low Voltage	S_CL,			0.4	V	I _{SBOL} = 6 mA
I _{SBOL}	SBUS-Data Output High Current	S_ID, S_DA_OUT			1	μА	V _{SBOH} = 5 V
f _{SB}	SBUS-Clock Frequency	S_CL		4608		kHz	DVSUP = 5 V, NICAM-PLL closed
t _{SB1/SB2}	SBUS-Clock High/Low-Ratio		0.9	1.0	1.1	ns	

	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
t _{SB3}	SBUS-Clock Setup Time before Ident End Pulse	S_CL, S_ID	210			ns	DVSUP = 5.25 V
t _{SB4}	SBUS-Data Setup Time before Rising Edge of Clock	S_CL, S_DA_OUT	50			ns	DVSUP = 4.75 V
t _{S5}	SBUS-Data Stable Time		120			ns	DVSUP = 5.25 V
t _{S6}	SBUS-Ident End Pulse Time	S_ID	210			ns	DVSUP = 5.25 V
V _{I2SOL}	I ² S Output Low Voltage	I ² S_WS, I ² S_CL,	0.4			V	I _{I2SOL} = 2 mA
V _{I2SOH}	I ² S Output High Voltage	I ² S_DA_OUT			4.0	V	I _{I2SOH} = -2 mA
f _{I2SCL}	I ² S-Clock Output Frequency	I ² S_CL		1204		kHz	DVSUP = 5 V, NICAM-PLL closed
f _{I2SWS}	I ² S-Wordstrobe Output Frequency	I ² S_WS		32.0		kHz	DVSUP = 5 V, NICAM-PLL closed
t _{I2S1/I2s2}	I ² S-Clock High/Low-Ratio	I ² S_CL	0.9	1.0	1.1		
t _{12S3}	I ² S-Data Setup Time before Rising Edge of Clock	I ² S_CL, I ² S_DA_OUT	200			ns	DVSUP = 4.75 V
t _{12S4}	I ² S-Data Hold Time after Falling Edge of Clock		12			ns	DVSUP = 5.25 V
t _{12S5}	I ² S-Wordstrobe Setup Time before Rising Edge of Clock	I ² S_CL, I ² S_WS	100			ns	DVSUP = 4.75 V
t _{12S6}	I ² S-Wordstrobe Hold Time after Falling Edge of Clock		50			ns	DVSUP = 5.25 V
Analog Grour	nd						
V _{AGNDC0}	AGNDC Open Circuit Voltage	AGNDC	3.73	3.83	3.93	V	R _{load} ≥10 MΩ
dV _{BAGNDI}	Deviation of BAGNDI1 Voltage from AGNDC Voltage	BAGNDI1, AGNDC	-20		+20	mV	
R _{outBAGN}	BAGNDI1 Output Resistance	BAGNDI1		6		Ω	f _{signal} = 1 kHz, I = 0.1 mA
Analog Input	Resistance						
R _{inSC}	SCART Input Resistance at $T_j = 27 ^{\circ}\text{C}$ from $T_A = 0$ to 70 $^{\circ}\text{C}$	SCn_IN_s ¹⁾	26 25	40	56 61	kΩ kΩ	f _{signal} = 1 kHz, I = 0.05 mA
R _{inMONO}	MONO Input Resistance at $T_j = 27 ^{\circ}\text{C}$ from $T_A = 0$ to $70 ^{\circ}\text{C}$	MONO_IN	10.5 10	16	23 25	kΩ kΩ	f _{signal} = 1 kHz, I = 0.1 mA
Audio Analog	-to-Digital-Converter						
V _{AICL}	Effective Analog Input Clipping Level for Analog-to-Digital- Conversion	SCn_IN_s, ¹⁾ MONO_IN	2.02	2.12	2.22	V _{RMS}	
SCART Outp	uts					<u> </u>	•
R _{outSC}	SCART Output Resistance at $T_j = 27 ^{\circ}\text{C}$ from $T_A = 0$ to 70 $^{\circ}\text{C}$	SCn_OUT_s ¹⁾	0.215 0.21	0.33	0.46 0.5	kΩ kΩ	f _{signal} = 1 kHz, I = 0.1 mA
dV _{OUTSC}	Deviation of DC-Level at SCART		-50		+50	mV	

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
A _{SCtoSC}	Gain from Analog Input to SCART Output	SCn_IN_s ¹⁾ MONO_IN	-1.0	0	+0.5	dB	f _{signal} = 1 kHz
f _{rSCtoSC}	Frequency Response from Analog Input to SCART Output bandwidth: 0 to 20000 Hz	→ SCn_OUT_s ¹⁾	-0.5	0	+0.5	dB	with resp. to 1 kHz
V _{outSC}	Effective Signal Level at SCART- Output during full-scale digital in- put signal from DSP	SCn_OUT_s ¹⁾	1.8	1.9	2.0	V _{RMS}	f _{signal} = 1 kHz
Main and AL	JX Outputs						
R _{outMA}	Main/AUX Output Resistance at $T_j = 27$ °C from $T_A = 0$ to 70 °C	DACp_s ¹)	2.1 2.1	3.3	4.6 5.0	kΩ kΩ	f _{signal} = 1 kHz, I = 0.1 mA
V _{outDCMA}	DC-Level at Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB		1.74 -	1.94 61	2.14 -	V mV	
V _{outMA}	Effective Signal Level at Main/ AUX-Output during full-scale digi- tal input signal from DSP for Ana- log Volume at 0 dB		1.23	1.37	1.51	V _{RMS}	f _{signal} = 1 kHz
Analog Perfo	-						o.g.ta.
SNR	Signal-to-Noise Ratio						
	from Analog Input to DSP	MONO_IN, SCn_IN_s ¹⁾	82	88		dB	Input Level = -20 dB with resp. to V _{AICL} , f _{sig} =1 kHz, equally weighted 20 Hz16 kHz ²⁾
	from Analog Input to SCART Output	MONO_IN, SCn_IN_s ¹⁾ → SCn_OUT_s ¹⁾	93	96		dB	Input Level = -20 dB, f _{sig} = 1 kHz, equally weighted 20 Hz20 kHz
	from DSP to SCART Output	SCn_OUT_s ¹⁾	85	88		dB	Input Level = -20 dB , $f_{sig} = 1 \text{ kHz}$, equally weighted $20 \text{ Hz} \dots 15 \text{ kHz}^{3)}$
	from DSP to Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB	DACp_s ¹⁾	85 78	88 83		dB dB	Input Level = -20 dB, f _{sig} =1 kHz, equally weighted 20 Hz15 kHz ³⁾

^{1) &}quot;n" means "1", "2" or "3", "s'
2) DSP measured at I²S-Output
3) DSP Input at I²S-Input "s" means "L" or "R", "p" means "M" or "A"

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
THD	Total Harmonic Distortion						
	from Analog Input to DSP	MONO_IN, SCn_IN_s ¹⁾			0.05	%	Input Level = -3 dBr with resp. to V _{AICL} , f _{sig} = 1 kHz, equally weighted 20 Hz 16 kHz ²)
	from Analog Input to SCART Output	MONO_IN, SCn_IN_s → SCn_OUT_s ¹⁾		0.01	0.03	%	Input Level = -3 dBr, f _{sig} = 1 kHz, equally weighted 20 Hz 20 kHz
	from DSP to SCART Output	SCn_OUT_s ¹⁾		0.01	0.03	%	Input Level = -3 dBr, $f_{sig} = 1$ kHz, equally weighted 20 Hz 16 kHz ³⁾
	from DSP to Main or AUX Output	DACA_s, DACM_s ¹⁾		0.01	0.03	%	Input Level = -3 dBr, $f_{sig} = 1$ kHz, equally weighted 20 Hz 16 kHz ³⁾
XTALK	Crosstalk attenuation – PLCC68 – PSDIP64						Input Level = -3 dB, f_{sig} = 1 kHz, unused analog inputs connected to ground by Z < 1 k Ω
	between left and right channel with SCART Input/Output pair (L→R, R-						equally weighted 20 Hz20 kHz
	SCn_IN → SCn_OUT ¹⁾	PLCC68 PSDIP64	80 80			dB dB	
	SC1_IN or SC2_IN → DSP ¹⁾	PLCC68 PSDIP64	80 80			dB dB	2)
	SC3_IN → DSP ¹⁾	PLCC68 PSDIP64	75 75			dB dB	
	DSP → SCn_OUT ¹⁾	80 70			dB dB	3)	
	between left and right channel within Main or AUX Output pair						equally weighted 20 Hz16 kHz
	$DSP \to DACp^{1)}$	PLCC68 PSDIP64	80 75			dB dB	3)

[&]quot;s" means "L" or "R", "p" means "M" or "A"

^{1) &}quot;n" means "1", "2" or "3", "s 2) DSP measured at I²S-Output 3) DSP Input at I²S-Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
XTALK	between SCART Input/Output pairs D = disturbing program O = observed program	.1)					(equally weighted 20 Hz20 kHz) same signal source on left and right disturbing chan- nel, effect on each ob-
	$\begin{array}{l} \text{D: MONO/SCn_IN} \rightarrow \text{SCn_OUT} \\ \text{O: MONO/SCn_IN} \rightarrow \text{SCn_OUT}^1) \end{array}$	PLCC68 PSDIP64	100 100			dB dB	served output channel
	D: MONO/SC1/2_IN → SCn_OUT O: or unsel. MONO/SCn_IN → DSF	PLCC68 PSDIP64	95 95			dB dB	2)
	D: SC3_IN \rightarrow SCn_OUT O: or unsel. MONO/SCn_IN \rightarrow DSF	PLCC68 PSDIP64	75 75			dB dB	2)
	D: MONO/SCn_IN \rightarrow SC1_OUT O: DSP \rightarrow SC2_OUT ¹)	PLCC68 PSDIP64	100 100			dB dB	3)
	D: MONO/SCn_IN \rightarrow SC2_OUT O: DSP \rightarrow SC1_OUT ¹)	PLCC68 PSDIP64	80 85			dB dB	3)
	D: MONO/SCn_IN \rightarrow unselected O: DSP \rightarrow SC1_OUT ¹⁾	PLCC68 PSDIP64	100 100			dB dB	3)
	Crosstalk between Main and AUX C $ DSP \rightarrow DACp^{1)} $	Output pairs PLCC68 PSDIP64	95 90			dB dB	(equally weighted 20 Hz16 kHz) ³⁾ same signal source on left and right disturbing channel, effect on each observed output channel
	Crosstalk from Main or AUX Output and vice versa D = disturbing program O = observed program	to SCART Output					(equally weighted 20 Hz20 kHz) same signal source on left and right disturbing chan- nel, effect on each ob- served output channel
	D: MONO/SCn_IN/DSP \rightarrow SCn_Ol O: DSP \rightarrow DACp ¹⁾	JT PLCC68 PSDIP64	90 85			dB dB	SCART output load resistance 10 $k\Omega$
	D: MONO/SCn_IN/DSP \rightarrow SCn_Ol O: DSP \rightarrow DACp ¹)	JT PLCC68 PSDIP64	95 85			dB dB	SCART output load resistance 30 $k\Omega$
	$\begin{array}{l} \text{D: DSP} \rightarrow \text{DACp} \\ \text{O: MONO/SCn_IN} \rightarrow \text{SCn_OUT}^1) \end{array}$	PLCC68 PSDIP64	100 95			dB dB	3)
	D: DSP \rightarrow DACM O: DSP \rightarrow SCn_OUT ¹)	PLCC68 PSDIP64	83 74			dB dB	
	D: DSP \rightarrow DACA O: DSP \rightarrow SCn_OUT ¹⁾	PLCC68 PSDIP64	100 90			dB dB	

 $^{^{1)}}$ "n" means "1", "2" or "3", "s" means "L" or "R", "p" means "M" or "A" DSP measured at I²S-Output $^{3)}$ DSP Input at I²S-Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
PSRR: reject	ion of noise on AHVSUP at 1 kHz				•		
	AGNDC	AGNDC		80		dB	
	BAGNDI	BAGNDI		80		dB	
	From Analog Input to DSP	MONO_IN, SCn_IN_s ¹⁾		69		dB	
	From Analog Input to SCART Output	MONO_IN, SCn_IN_s ¹⁾ SCn_OUT_s ¹⁾		77		dB	
	From DSP to SCART Output	SCn_OUT_s ¹⁾		67		dB	
	From DSP to MAIN/AUX Output	DACp_s ¹⁾		71		dB	
S/N _{FM}	FM Input to Main/AUX/SCART Output	DACp_s, SCn_OUT_s ¹⁾	70		-	dB	1 FM-carrier 5.5 MH: 50 μs, 1 kHz, 40 kHz dev ation; RMS, unweighted to 15 kHz; full input rang
S/N _{NICAM}	Signal to Noise ratio of NICAM baseband signal on Main/AUX/SCART outputs	DACp_s, SCn_OUT_s ¹⁾	TBD		_	dB	
S/N _{D2MAC}	Signal to Noise ratio of D2MAC baseband signal on Main/AUX/ SCART outputs	DACp_s, SCn_OUT_s ¹⁾	TBD		-	dB	
THD _{FM}	Total Harmonic Distortion + Noise of FM demodulated signal on Main/AUX/SCART output	DACp_s, SCn_OUT_s ¹⁾	-		0.3	%	1 FM-carrier 5.5 MH: 1 kHz, 50 µs; 40 kHz dev ation; full input range
THD _{NICAM}	Total Harmonic Distortion + Noise of NICAM baseband signal on Main/AUX/SCART output	DACp_s, SCn_OUT_s ¹⁾	-	0.01	0.1	%	2.12 kHz, Modulator inpulevel = 0 dBref
THD _{D2MAC}	Total Harmonic Distortion + Noise of D2MAC baseband signal for Main/AUX/SCART output	DACp_s, SCn_OUT_s ¹⁾	-	0.01	0.1	%	2.12 kHz, Modulator inpulevel = 0 dBref
BER _{NI}	NICAM: Bit Error Rate	-	-	-	10 ⁻⁷	/s	FM+NICAM, norm cond tions
R _{IFIN}	Input Impedance	ANA_IN1+, ANA_IN2+, ANA_IN–	1.2 6.0	2.0 9.1	3.1 13.8	kOhm kOhm	Gain AGC = 20 dB Gain AGC = 3 dB
DC _{VREFTOP}	DC voltage at VREFTOP	VREFTOP	_	2.67	-	V	V _{SUPANALOG} = 5 V
DC _{ANA_IN+}	DC voltage on active IF input	ANA_IN1+, ANA_IN2+	-	1.5	_	V	V _{SUPANALOG} = 5 V
DC _{ANA_IN-}	DC voltage on common IF input	ANA_IN-	-	1.5	-	V	V _{SUPANALOG} = 5 V
dV _{FMOUT}	Tolerance of output voltage of FM demodulated signal	DACp_s, SCn_OUT_s ¹⁾	-1.5		+1.5	dB	1 FM-carrier, 50 μs, 1 kH 40 kHz deviation; RMS
dV- NICAMOUT	Tolerance of output voltage of NICAM baseband signal	DACp_s, SCn_OUT_s ¹⁾	-1.5		+1.5	dB	2.12 kHz, Modulator inpolevel = 0 dBref
dV- D2MACOUT	Tolerance of output voltage of D2MAC baseband signal	DACp_s, SCn_OUT_s ¹⁾	-1.5		+1.5	dB	2.12 kHz, Modulator inpolevel = 0 dBref
fR _{FM}	FM Frequency Response on Main/ AUX/SCART Outputs, Bandwidth 20 to 15000 Hz	DACp_s, SCn_OUT_s ¹⁾	-1.0		+1.0	dB	1 FM-carrier 5.5 MHz, 50 μs, Modulator input level = –14.6 dBref; RMS

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Condition
fR _{NICAM}	NICAM Frequency Response on Main/AUX/SCART Outputs, Bandwidth 20 to 15000 Hz	DACp_s, SCn_OUT_s ¹⁾	-1.0		+1.0	dB	Modulator input level = -12 dB dBref; RMS
fR _{D2MAC}	D2MAC Frequency Response on Main/AUX/SCART Outputs, Bandwidth 20 to 15000 Hz	DACp_s, SCn_OUT_s ¹⁾	-1.0		+1.0	dB	Modulator input level = -12 dB dBref; RMS
SEP _{FM}	FM Channel Separation (Stereo)	DACp_s, SCn_OUT_s ¹⁾	50			dB	2 FM-carriers 5.5/5.74 MHz, 50 μs, 1 kHz, 40 kHz deviation; RMS
SEP _{NICAM}	NICAM Channel Separation (Stereo)	DACp_s, SCn_OUT_s ¹⁾	80			dB	
SEP _{D2MAC}	D2MAC Channel Separation (Stereo)	DACp_s, SCn_OUT_s ¹⁾	80			dB	
XTALK _{FM}	FM Crosstalk Attenuation (Dual)	DACp_s, SCn_OUT_s ¹⁾	80			dB	2 FM-carriers 5.5/5.74 MHz, 50 μs, 1 kHz, 40 kHz deviation; RMS
XTALK- NICAM	NICAM Crosstalk Attenuation (Dual)	DACp_s, SCn_OUT_s ¹⁾	80			dB	
XTALK- D2MAC	D2MAC Crosstalk Attenuation (Dual)	DACp_s, SCn_OUT_s ¹⁾	80			dB	

^{1) &}quot;n" means "1", "2" or "3", "s" means "L" or "R", "p" means "M" or "A"

14. Timing Diagrams

14.1. Power-up Sequence

The reset should not reach high level before the oscillator has started. This requires a reset delay of > 1 ms (see Fig.14–1).

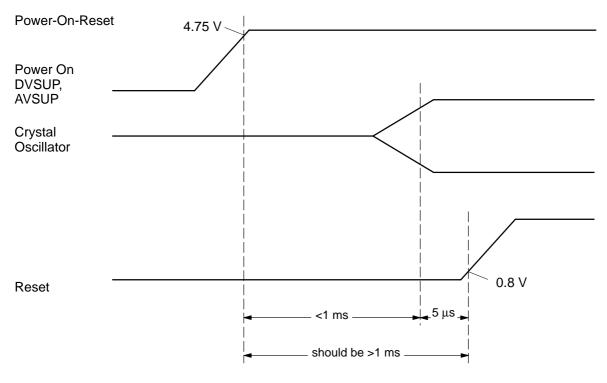
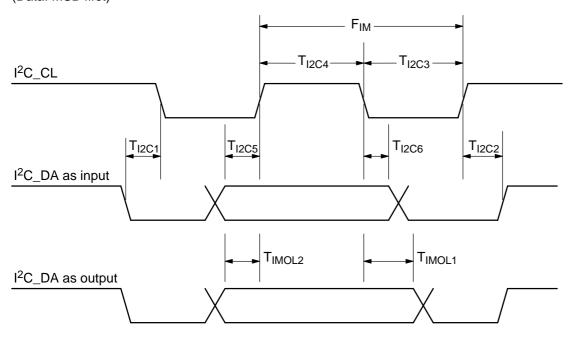
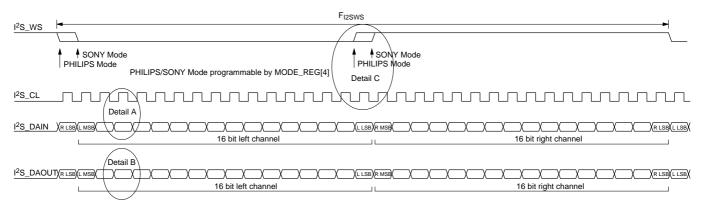
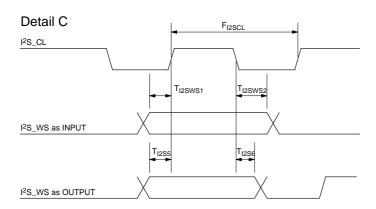


Fig. 14-1: Power-up sequence

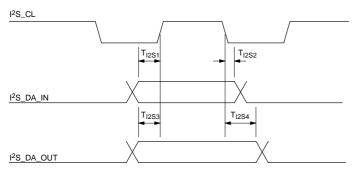
14.2. I²C Bus Timing Diagram

(Data: MSB first)

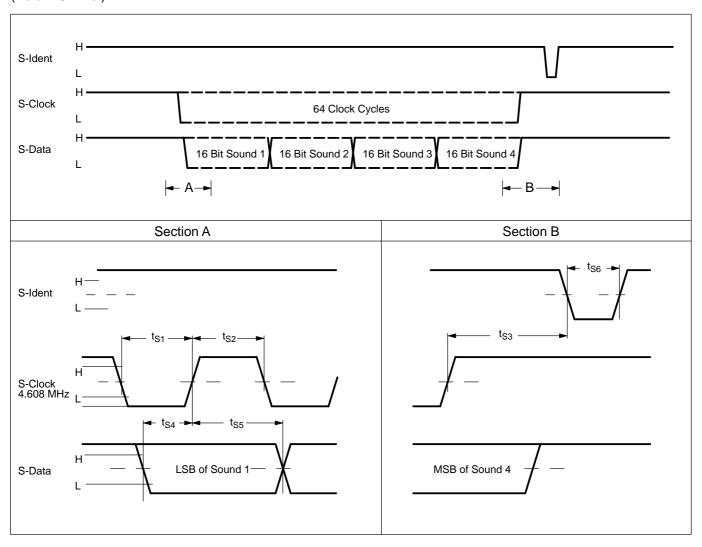




Fig. 14–2: I²C bus timing diagram

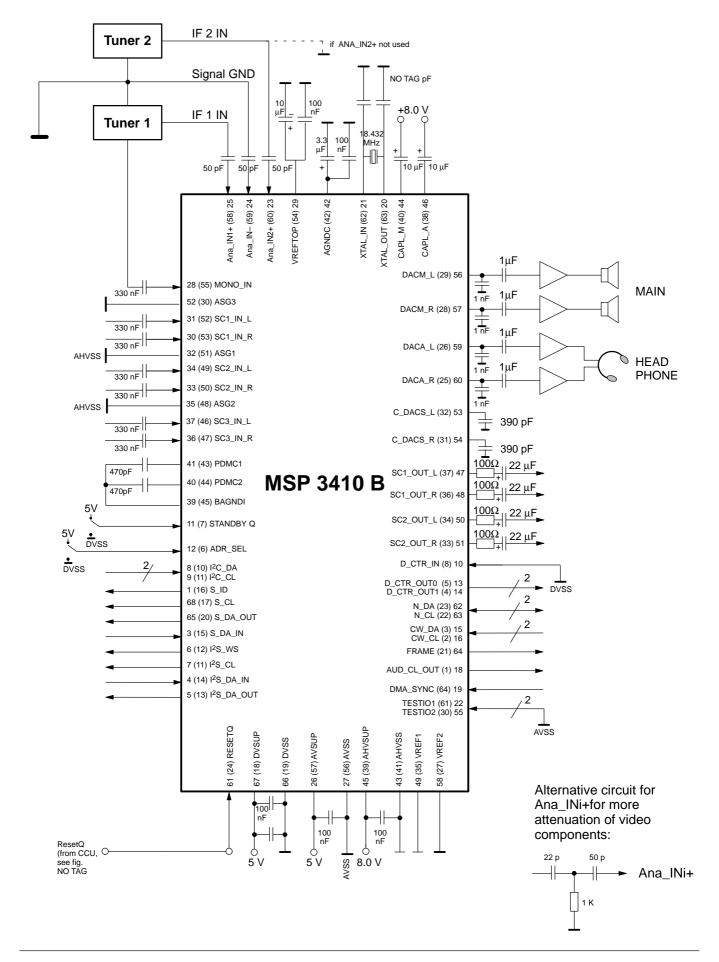
54


14.3. I²S Bus Timing Diagram

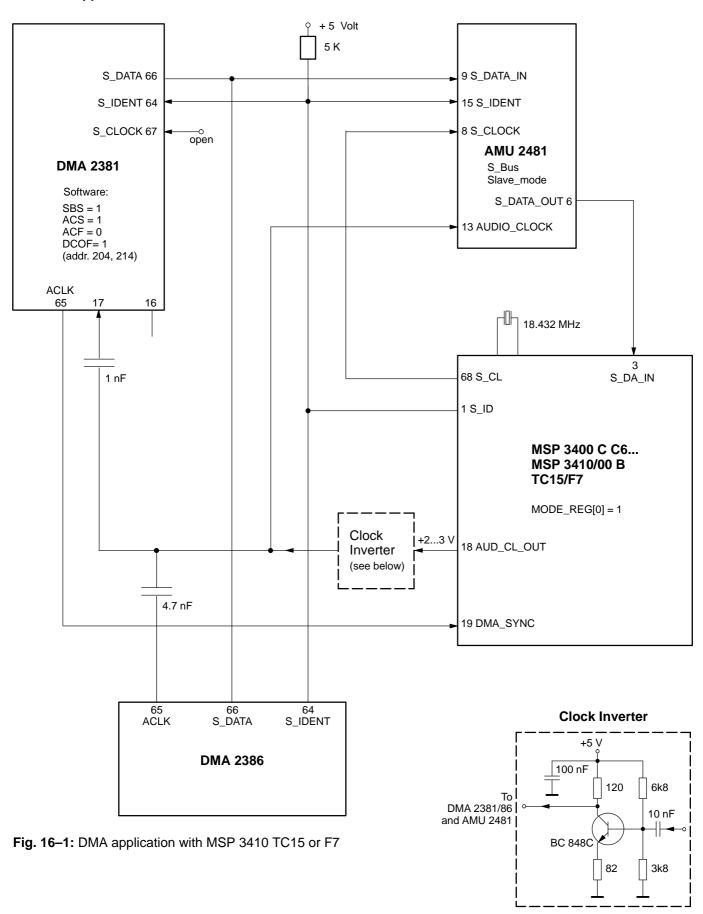
(Data: MSB first)



Detail A,B



14.4. SBUS Timing Diagram


(Data: LSB first)

15. Application Circuit

16. DMA Application

Note: Pin numbers refer to PLCC packages for DMA 2381 and MSP3410, and to PSDIP package for AMU 2481.

58

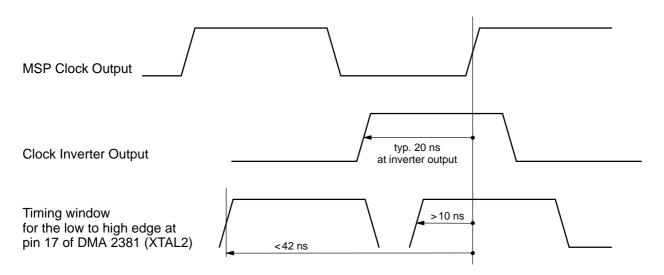


Fig. 16-2: Timing requirements for the clock signal at the DMA 2381 clock input

In the following table, the input/output clock-specification of the D2MAC circuit is shown.

Table 16-1: Clock input and output specification for MSPs

	MSP 3400 C –C6 new Version	MSP 3410/00B -F7 new Version	MSP 3410/00B TC15 actual Version
XTAL_IN min (minimum amplitude)	>0.7 Vpp	>0.7 Vpp	>0.7 Vpp
C input (after Reset)	22 pF	22 pF	31 pF
AUD_CL_OUT min with C load	>1.2 Vpp 40 pF	>1.2 Vpp 40 pF	>1.0 Vpp 43 pF
Rout (HF) typ.	150 Ω	120 Ω	120 Ω

Table 16–2: Clock input and output specification for ICs connected to MSP

	DMA 2381	DMA 2386	AMU2481
XTAL_IN min Clock-in min (minimal amplitude)	>0.7 Vpp	>0.7 Vpp	>0.7 Vpp
C input	24 pF 10 pF with: Adr. 204,14=1	7pF	7pF

For the DMA_SYNC input specification of the MSP, please refer to page 42 "V $_{\rm DMAIL}$, V $_{\rm DMAIH}$."

17. I²S Bus in Master/Slave Configuration with Standby Mode

In a master/slave application, both MSP, after power up and reset, will start as master by default. This means that before the slave MSP is set to slave-mode, relatively large current-pulses (~20 mA) in the I2S_CL and I2S_WS lines can cause some crackling noise during startup time, if the the MSP is demuted before the slave MSP is set to slave mode.

These high current pulses are also possible, if the active I2S_CL and I2S_WS outputs of the master MSP are clipped by the correspondent inputs of the slave MSP, which is switched to standby mode.

To avoid this, it is recommended, that the I2S-bus lines I2S_CL and I2S_WS are current-limited to about 5 mA with series resistors of about 390 Ω (330...470 Ω).

Fig. 17–1 depicts the recommended application circuit for two MSP 3410/00B or MSP 3400 C, which are connected via I2S Bus in a master/slave configuration, and where the slave MSP can be switched in standby mode (+5 Volt power is switched off).

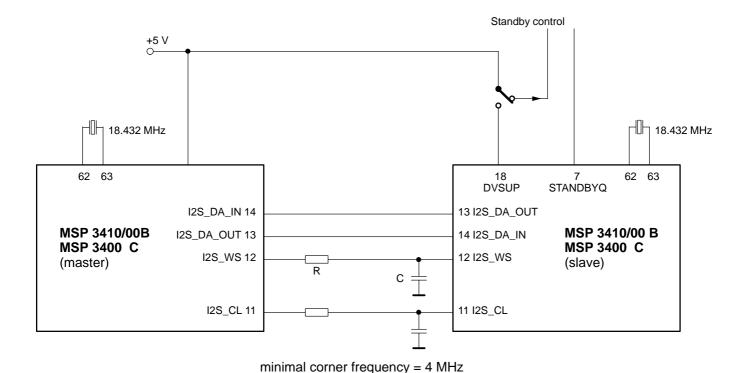


Fig. 17–1: I²S master/slave application

60 ITT Semiconductors

with R = 390 Ω (330–470 Ω)

18. APPENDIX A: MSP 3410/3400 B Technical Code History

TC01

First hardware release with basic software for TV sets. Date: December 1992. Missing software features: Identification, spatial effects, DC level readout, adaptive Deemphasis, D2MAC processing, full feature volume control, quasi peak detector, balance, loudness, beeper.

Bug list:

- 1. no NICAM-synchronisation with digital test signals
- 2. Error in the d/a-converter; this fault is notable with full scale output signals.
- 3. insufficient THD quality of the Main a. Aux outputs
- 4. Software reset has no effect to the FP.
- 5. I²C-Bus: DFP-RAM-Address '6' causes troubles: The problem preliminary can be solved by means of a trick in the control program.

TC02

Emulator version of TC01.

TC03

Hardware as in TC01 with additional software features: Identification, spatial effects, DC level readout, adaptive Deemphasis (first release with bugs).

TC04

Second hardware release with new pinning (given in this document), new I²C bus protocol and completed software for basic TV receivers. Date: June 1993. Missing features to full spec: adaptive Deemphasis, D2MAC processing.

TC05

Reserved technical code for emulator version of TC04.

TC06

Same hardware version as TC04 but with basic software for satellite applications (D2MAC and Wegener). Missing features: Identification, spatial effects, MQ oversampling switchable, full feature volume control, quasi peak detector, balance, loudness, bass, treble, NICAM, beeper (see diagram below).

Note: TC04 and TC06 unfortunately show a number of failures. For a detailed list, together with application notes, see separate document.

TC07

Emulator version for software development.

TC08

Hardware and software of TC04 with aluminium corrections.

TC09

Satellite version based on TC06 without I²C-Bus problem and startup-problem of TC06.

TC10

Projected final hardware. Software completed, but without D2MAC.

TC12

- 1. As TC10, but without start-up problem.
- 2. I²S slave mode not working
- 3. High deviation mode switchable by 'HDEV' = 1 and 'FM1FM2' = 0

TC13

Emulator version for software development.

TC14

Alternative I²C Device Address (84/85), new bass/treble characteristics, new carrier mute algorithm (not working properly yet), switchable AUDIO_CLOCK_OUT.

TC15

New features:

- 1. High deviation mode ok
- 2. Open loop frequency of crystal oscillator is approx. 0.5 kHz higher.
- 3. FM-carrier mute improved
- 4. Various internal modifications to minimize radiation problems
- 5. Slightly modified loudness characteristic
- 6. Reset facility for identification filters
- 7. Beeper no longer effected by loudness
- 8. Beeper gain reduced by 6 dB
- 9. Volume-main effects beeper in 1 dB steps
- 10. I²S slave mode o.k.

Known restrictions:

- 1. I²C bus problem for multibus systems (see Appendix C). This problem was resident in all technical codes before.
- 2. I²C-problem concerning Time_Out_Enable: This bit should not be set and will have no function for future technical codes.
- 3. Mute positions for volume of loudspeaker and headphone channels are to be modified.

F7

- 1. DFP-part now controllable before having loaded any demodulator parameters.
- 2. switchable loudness characteristic
- 3. Nicam-processing: overload level increased by 6 dB
- 4. I²C-bus:
 - Time-out bit CONTROL[14] is cancelled and must be set to 0.
 - I²C-clock will no longer be pulled down for more than 1 ms in the non-error condition.
 - I²C-error condition is now indicated by NAKs after a 7 ms low period of the I²C-clock.
 - I²C-bus problem for multibus systems is solved.
- 5. Oscillator: modified crystal specs
- 6. Various minor changes to reduce radiation, i.e. SBUS can be switched to tristate by means of MODE_REG[11], modified clock buffer, and decoupling capacities on-chip.
- 7. Audio_Clock_Output AC voltage $1.0 \rightarrow 1.2 V_{pp}$

19. APPENDIX B: Documentation History

19.1. MSP 3410

- 1. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.0, April 1993, 6251-366-1PD: First preliminary release of the data sheet.
- 2. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.1, June 1993, 6251-366-2PD: Second preliminary release of the data sheet. Major changes:
- definition of standby mode
- definition of the DSP software features of TC04
- correction of I²C read operation
- new chapter S-Bus interface
- new chapter I²S-Bus interface
- new definition of volume, balance, loudness and beeper control registers
- some changes in the specification chapter
- timing diagrams of I2C, I2S, and S-BUS
- application diagram for D2MAC operations
- changes in the application diagram: use of 50 pF caps for IF inputs, pins STANDBYQ, ADR_SEL and D_CTR_IN0 should not be left open.
- 3. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.2, September 1993, 6251-366-3PD: Third preliminary release of the data sheet. Major changes:
- high deviation FM mode
- compatibility restrictions regarding future Technical Codes and MSP3400
- new I²C-Bus alternative address
- complemented application circuit
- 4. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.3, January 19, 1994, 6251-366-4PD: Fourth preliminary release of the data sheet. Major changes:
- Table 10–1: Recommended channel assignments for demodulator and audio processing part
- 5. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.4, February 15, 1994, 6251-366-5PD: Fifth preliminary release of the data sheet. No major changes. Changes have been made to improve comprehension.

19.2. MSP 3410 and MSP 3400

With this release of the data sheet, two versions are available: The MSP 3410 and the MSP 3400 version.

1. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.5, April 12, 1994,

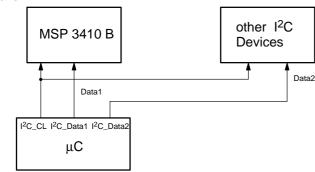
6251-366-6PD: Sixth preliminary release of the data sheet and data sheet "MSP 3400 Multistandard Sound Processor Preliminary" March 28, 1994, 6251-378-1PD: First preliminary release of the data sheet.

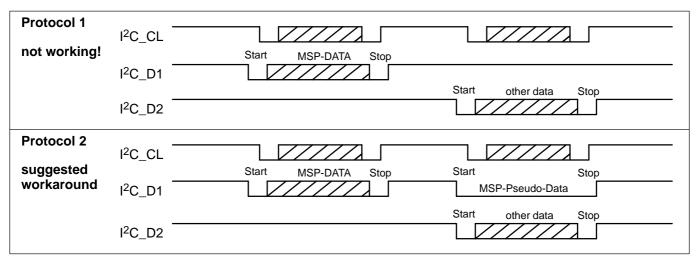
Major changes:

- D2MAC registers 12hex and 20hex–2fhex no longer supported.
- New recommendation for FM prescale for adaptive deemphasis.
- Appendix C: Documentation of known hardware restrictions.
- Table 3–3: "Summary of NICAM 728 sound modulation paramters": Specification for France inserted.
- Table 4–1: "Some examples for recommended channel assignments for demodulator and audio processing part": New modes inserted.
- 2. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.6, July 12, 1994, 6251-366-7PD: Seventh preliminary release of the data sheet and data sheet "MSP 3400 Multistandard Sound Processor Preliminary" July 12, 1994, 6251-378-2PD: Second preliminary release of the data sheet.
- new volume table for loudspeaker and headphone channel
- new I2C-Bus failure mode
- modified crystal specs
- 3. Data sheet "MSP 3410 Multistandard Sound Processor Preliminary" version 0.7, Oct. 6, 1995, 6251-366-8PD: Eighth preliminary release of the data sheet and data sheet "MSP 3400 Multistandard Sound Processor Preliminary", Oct. 6 1995, 6251-378-3PD: Third preliminary release of the data sheet.
- switchable loudness characteristic
- oscillator: modified crystal specs
- section 13.4.: pin circuits new
- new circuit recommendations for MSP-DMA applications

19.3. MSP 3410 B and MSP 3400 B

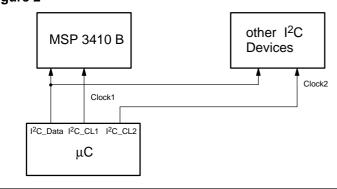
With this release of the data sheet, two versions are available: The MSP 3410 $\bf B$ and the MSP 3400 $\bf B$ version

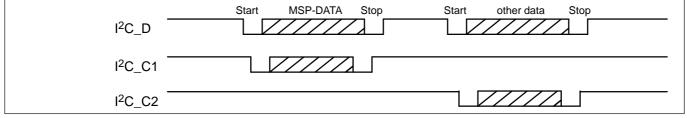

- 1. Data sheet "MSP 3410 B Multistandard Sound Processor Preliminary" version 0.8, Nov. 20, 1995, 6251-366-9PD: Ninth preliminary release of the data sheet and data sheet "MSP 3400 B Multistandard Sound Processor Preliminary", Nov. 20, 1995, 6251-378-4PD: Fourth preliminary release of the data sheet. Major changes:
- Fig. 13-1: PLCC68 package dimensions changed
- Fig. 13-2: PSDIP64 package dimensions changed
- Fig. 4–3: changes have been made to improve comprehension


20. APPENDIX C: Documentation of known hardware restrictions for TC≤15

I²C-Bus

The I²C-Clock line must not be clocked in between two data transmissions (from last stop condition to next start condition). This may occur in multi bus I²C-systems with shared clock line (s. Figure 1), if protocol 1 is applied. As a preliminary workaround we recommend using protocol 2.





No problem was found in multi bus I²C-systems with shared data line and multiple clock lines (s. Figure 2):

Figure 2

21. Index

A

A/D converter, 9

Absolute Maximum Ratings, 41

ACB Register, 31

AD_CV, 9, 17, 19

ADD_BITS, 22

AGC, 9, 17, 19

AM, 5, 24

Application circuit, 54, 55, 56, 57, 58

AUDIO, PLL, 15

Audio Processing Part, 26

Automatic search function, 25

B

B/G standard, 5, 24

Balance Loudspeaker Channel. See Loudspeaker Channels

Bandwidth, 10

Bass Loudspeaker Channel. See Loudspeaker Channels

Beeper, 31 Frequency, 31 Volume, 31

Bit error rate, 22

Bit rate, 7

C

C AD BITS, 22

Carrier frequency, 6, 7, 9, 21

Channel

Matrix Modes, 29 Source Modes, 29

Channel Matrix Modes

Headphone, 29

12S, 29

Loudspeaker, 29

SCART, 29

Characteristics, 47

CIB_BITS, 22

Clock, PLL, 15

CONC_CT, 22

Crystal, specs, 15

D

D2-MAC, 15

DC Level Register. See Readable Registers

DC level register, 25

DC-offset, 20

DCO

increments, 17, 21 oscillator, 9, 21

DCO, oscillator, 21

Decimation, 10

Descrambler, 15

DFP Software Version. See Readable Registers

DIG_CTR_OUT Pins, 31

Digital input, 16

DMA Application, 58

DQPSK, 6

DSP Control Registers, 26

E

Electrical Characteristics, 41-52

Exclusions, 31

F

FAW_ER_TOL, 17

FAWCT_IST, 22

FAWCT SOLL, 17, 22

Filter

channel 1/2, 9 coefficient, FIR, 20, 21

FIR_REG_1/2, 17, 21

FΝ

Adaptive Deemphasis, 30

demodulation, 10

Fixed Deemphasis, 30

max. frequency deviation, 46

modulation, 7

stereo/mono, 5, 7, 15, 17, 23, 24

FM Matrix Modes, 30

FM Prescale, 29

FM_COEF, 20, 21

FM1/FM2, 9, 20, 24

FMAM, 20 N FP processor N-Bus, 15 LOAD_REG_1/2, 17 processing start, 17 NICAM, 19 additional data bits, 22 FP Software Version. See Readable Registers coding, 6 modes, 22 operation modes, 22 G sampling frequency, 6 timing recovery, 15 Gain, parameter, 19 Nicam, addresses, 22 German DUAL FM system, 5, 7, 24 NICAM Deemphasis, 30 NICAM Prescale, 30 0 I2C Bus Timing, 54 12S Bus Timing, 55 Operation mode register, 19 Identification Outline Dimensions, 34 FM, 10 NICAM, 22 Identification Mode, 31 IMREG, 20 PAL, 6 Input level, 19 Pay-TV, 15 Pilot frequency, 7 Pin Circuits, 39 J17, 30 Configurations, 38 Connections and Descriptions, 35 PLL, 15 Power-up Sequence, 54 Preemphasis, 6 Loudness Loudspeaker Channel. See Loudspeaker Channels PWM converter, 9 Loudspeaker Channel Balance, 27 Q **Bass**, 27 Loudness, 28 Quadrature mixer, 9 Spatial Effects, 28 Treble, 28 Quasi Peak Detector. See Readable Registers Volume, 27 R M RAM TEST, 17 Mixer frequency, 21 Read registers MODE_REG, 19 ADD BITS, 22 C_AD_BITS, 22 Modulation frequency, 7 CIB_BITS, 22 CONC_CT, 22 MSP Family Code. See Readable Registers FAWCT_IST, 22 MSP Hardware Version. See Readable Registers Readable Registers, 32 Multistandard, 24 DC Level Register, 33

Mute function, 11, 18

DFP Software Version, 33

FP Software Version, 33 MSP Family Code, 33 MSP Hardware Version, 33 Quasi Peak Detector, 33 Stereo Detection, 33

Recommended Operating Conditions, 42

Register. See Read/Write registers

Reset, 19

S

S-Bus, 16 mode, 20 setting, 20

Sampling frequency, 6, 10

Satellite TV mode, 24 sound, 21

SBUS Timing, 56

SCART Prescale, 29

SCART Switches, 31

Search function, 25

Software

flow diagram, 24 IM-Bus, 22

Sound carrier, 5

Spatial Effects Loudspeaker Channel. See Loudspeaker Channels

Specifications, 34-52

Standard Detection, 25

Standards, 4, 6

Stereo Detection Register. *See* Readable Registers Subcarrier, 21

Т

Timing Pay-TV, 15 recovery, 15

Timing Diagrams, 54-57

Transmission rate, 7

Treble Loudspeaker Channel. See Loudspeaker Channels

Volume Headphone Channel, 28 SCART Channel, 28

Volume Loudspeaker Channel. See Loudspeaker Channels

Write addresses, FP-jumps/routines, 17

Write register
A/D-converter, AD_CV, 19
ADD_BITS, 22
AUDIO_PLL, 17
DCO1_LO/HI, 21
DCO2_LO/HI, 21
FIR_REG1/2, 21

MODE_REG, 19

ITT Semiconductors Group World Headquarters INTERMETALL Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174

Printed in Germany Order No. 6251-366-9PD Reprinting is generally permitted, indicating the source. However, our consent must be obtained in all cases. Information furnished by ITT is believed to be accurate and reliable. However, no responsibility is assumed by ITT for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of ITT. The information and suggestions are given without obligation and cannot give rise to any liability; they do not indicate the availability of the components mentioned. Delivery of development samples does not imply any obligation of ITT to supply larger amounts of such units to a fixed term. To this effect, only written confirmation of orders will be binding.