Low Power，Single－Supply DIFFERENCE AMPLIFIER

FEATURES

－LOW QUIESCENT CURRENT： $160 \mu \mathrm{~A}$
－WIDE SUPPLY RANGE
Single Supply：2．7V to 36V
Dual Supplies：$\pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
－LOW GAIN ERROR：$\pm 0.075 \%$ max
－LOW NONLINEARITY：0．001\％max
HIGH CMR：90dB
－HIGHLY VERSATILE CIRCUIT
－EASY TO USE
－LOW COST
－8－PIN DIP AND SO－8 PACKAGES

DESCRIPTION

The INA132 is a low power，unity－gain differential amplifier consisting of a precision op amp with a precision resistor network．The on－chip resistors are laser trimmed for accurate gain and high common－ mode rejection．Excellent TCR tracking of the resis－ tors maintains gain accuracy and common－mode re－ jection over temperature．The internal op amp＇s com－ mon－mode range extends to the negative supply－ ideal for single－supply applications．It operates on single $(2.7 \mathrm{~V}$ to 36 V$)$ or dual supplies $(\pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ ）．
The differential amplifier is the foundation of many commonly used circuits．The INA132 provides this circuit function without using an expensive precision resistor network．The INA132 is available in 8－pin DIP and SO－8 surface－mount packages and is speci－ fied for operation over the extended industrial tem－ perature range，$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

APPLICATIONS

－DIFFERENTIAL INPUT AMPLIFIER
－INSTRUMENTATION AMPLIFIER BUILDING BLOCK
－UNITY－GAIN INVERTING AMPLIFIER
－$G=1 / 2$ AMPLIFIER
－$G=2$ AMPLIFIER
－SUMMING AMPLIFIER
－DIFFERENTIAL CURRENT RECEIVER
－VOLTAGE－CONTROLLED CURRENT SOURCE
－BATTERY－POWERED SYSTEMS
－GROUND LOOP ELIMINATOR

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to Ground, and Reference Pin connected to Ground, unless otherwise noted.

PARAMETER	CONDITIONS	INA132P, U			INA132PA, UA			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
OFFSET VOLTAGE ${ }^{(1)}$ Initial vs Temperature vs Power Supply vs Time	RTO $V_{S}= \pm 1.35 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}$		$\begin{gathered} \pm 75 \\ \pm 1 \\ \pm 5 \\ 0.3 \end{gathered}$	$\begin{gathered} \pm 250 \\ \pm 5 \\ \pm 30 \end{gathered}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \pm 500 \\ \pm 10^{(4)} \\ * \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$
INPUT IMPEDANCE ${ }^{(2)}$ Differential Common-Mode			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & * \\ & * \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CM}}=-15 \mathrm{~V} \text { to } 28 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \end{gathered}$	$\begin{gathered} (\mathrm{V}-) \\ 76 \end{gathered}$	90	2(V+)-2	$\begin{gathered} * \\ 70 \end{gathered}$	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$
OUTPUT VOLTAGE NOISE ${ }^{(3)}$ $\begin{aligned} & f=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	RTO		$\begin{aligned} & 1.6 \\ & 65 \end{aligned}$			$\begin{aligned} & * \\ & * \end{aligned}$		$\mu \vee$ p-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
```GAIN Initial Error vs Temperature \({ }^{(4)}\) vs Nonlinearity```	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-14 \mathrm{~V} \text { to } 13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=-14 \mathrm{~V} \text { to } 13.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1 \\ \pm 0.01 \\ \pm 1 \\ \pm 0.0001 \end{gathered}$	$\begin{gathered} \pm 0.075 \\ \pm 10 \\ \pm 0.001 \end{gathered}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \pm 0.1 \\ * \\ \pm 0.002 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \text { of } \mathrm{FS} \end{gathered}$
OUTPUT   Voltage, Positive   Negative   Positive   Negative   Current Limit, Continuous to Common   Capacitive Load (Stable Operation)	$R_{L}=100 \mathrm{k} \Omega$ to Ground   $R_{L}=100 \mathrm{k} \Omega$ to Ground   $R_{L}=10 k \Omega$ to Ground   $R_{L}=10 \mathrm{k} \Omega$ to Ground	$\begin{gathered} (\mathrm{V}+)-1 \\ (\mathrm{~V}-)+0.5 \\ (\mathrm{~V}+)-1.5 \\ (\mathrm{~V}-)+1 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.8 \\ (\mathrm{~V}-)+0.15 \\ (\mathrm{~V}+)-0.8 \\ (\mathrm{~V}-)+0.25 \\ \pm 12 \\ 10,000 \end{gathered}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{pF} \\ \hline \end{gathered}$
FREQUENCY RESPONSE   Small Signal Bandwidth   Slew Rate   Settling Time: 0.1\%   0.01\%   Overload Recovery Time	$-3 d B$ $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V} \text { Step } \\ & \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V} \text { Step } \\ & 50 \% \text { Overdrive } \end{aligned}$		$\begin{gathered} 300 \\ 0.1 \\ 85 \\ 88 \\ 7 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		kHz   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$
POWER SUPPLY   Rated Voltage Voltage Range Quiescent Current	$\mathrm{I}_{0}=0 \mathrm{~mA}$	$\pm 1.35$	$\begin{gathered} \pm 15 \\ \pm 160 \end{gathered}$	$\begin{gathered} \pm 18 \\ \pm 185 \end{gathered}$	*	*   *	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$
TEMPERATURE RANGE   Specification   Operation   Storage   Thermal Resistance, $\Theta_{\mathrm{JA}}$   8-Pin DIP   SO-8 Surface-Mount		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{gathered} +85 \\ +125 \\ +125 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

*Specifications the same as INA132P.
NOTES: (1) Includes effects of amplifier's input bias and offset currents. (2) $40 \mathrm{k} \Omega$ resistors are ratio matched but have $\pm 20 \%$ absolute value. (3) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network. (4) Guaranteed by wafer test to $95 \%$ confidence level.

[^0]SPECIFICATIONS: $\mathrm{V}_{\mathbf{S}}=\mathbf{+ 5} \mathrm{V}$
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, and Reference Pin connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

	CONDITIONS	INA132P, U			INA132PA, UA			UNITS
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	
OFFSET VOLTAGE ${ }^{(1)}$   Initial   vs Temperature	RTO		$\begin{gathered} \pm 150 \\ \pm 2 \end{gathered}$	$\pm 500$		*   *	$\pm 750$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
INPUT VOLTAGE RANGE   Common-Mode Voltage Range Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $8 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$	$\begin{gathered} 0 \\ 76 \end{gathered}$	90	$2(\mathrm{~V}+)-2$	$\begin{gathered} * \\ 70 \end{gathered}$	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$
OUTPUT   Voltage, Positive   Negative   Positive   Negative	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & (\mathrm{V}+)-1 \\ & +0.25 \\ & (\mathrm{~V}+)-1 \\ & +0.25 \end{aligned}$	$\begin{gathered} (\mathrm{V}+)-0.75 \\ +0.06 \\ (\mathrm{~V}+)-0.8 \\ +0.12 \end{gathered}$		*   *   *   *	*   *   *   *		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLY   Rated Voltage Voltage Range Quiescent Current	$\mathrm{I}_{0}=0 \mathrm{~mA}$	+2.7	$\begin{gathered} +5 \\ \pm 155 \end{gathered}$	$\begin{gathered} +36 \\ \pm 185 \end{gathered}$	*	*   *	*   *	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$

*Specifications the same as INA132P.
NOTE: (1) Include effects of amplifier's input bias and offset currents.

## PIN CONFIGURATION



## ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V-	36 V
Input Voltage Range	$\pm 80 \mathrm{~V}$
Output Short-Circuit (to ground) .	... Continuous
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 1	... $+300^{\circ} \mathrm{C}$

## ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE   DRAWING   NUMBER	(1)
TEMPERATURE			
RANGE			

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.




TYPICAL PERFORMANCE CURVES (CONT)
At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.


## TYPICAL PERFORMANCE CURVES (CONT)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.




## APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for operation of the INA132. Power supply bypass capacitors should be connected close to the device pins.
The differential input signal is connected to pins 2 and 3 as shown. The source impedances connected to the inputs must be nearly equal to assure good common-mode rejection. An $8 \Omega$ mismatch in source impedance will degrade the com-mon-mode rejection of a typical device to approximately 80 dB . Gain accuracy will also be slightly affected. If the source has a known impedance mismatch, an additional resistor in series with one input can be used to preserve good common-mode rejection.
Do not interchange pins 1 and 3 or pins 2 and 5, even though nominal resistor values are equal. These resistors are laser trimmed for precise resistor ratios to achieve accurate gain and highest CMR. Interchanging these pins would not provide specified performance. As shown in Figure 1, measurements should be sensed at the load.


FIGURE 1. Basic Power Supply and Signal Connections.

## OPERATING VOLTAGE

The INA132 operates from single $(+2.7 \mathrm{~V}$ to $+36 \mathrm{~V})$ or dual ( $\pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ ) supplies with excellent performance. Specifications are production tested with +5 V and $\pm 15 \mathrm{~V}$ supplies. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in the typical performance curves.
The internal op amp in the INA132 is a single-supply design. This allows linear operation with the op amp's commonmode voltage equal to, or slightly below $\mathrm{V}-$ (or single
supply ground). Although input voltages on pins 2 and 3 that are below the negative supply voltage will not damage the device, operation in this region is not recommended. Transient conditions at the inverting input terminal below the negative supply can cause a positive feedback condition that could lock the INA132's output to the negative rail.
The INA132 can accurately measure differential signals that are above the positive power supply. Linear common-mode range extends to nearly twice the positive power supply voltage-see typical performance curve, Common-Mode Range vs Output Voltage.

## OFFSET VOLTAGE TRIM

The INA132 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The output is referred to the output reference terminal (pin 1), which is normally grounded. A voltage applied to the Ref terminal will be summed with the output signal. This can be used to null offset voltage. The source impedance of a signal applied to the Ref terminal should be less than $8 \Omega$ to maintain good common-mode rejection. To assure low impedance at the Ref terminal, the trim voltage can be buffered with an op amp, such as the OPA177.

## CAPACITIVE LOAD DRIVE CAPABILITY

The INA132 can drive large capacitive loads, even at low supplies. It is stable with a $10,000 \mathrm{pF}$ load. Refer to the "Small-Signal Step Response" and "Settling Time vs Load Capacitance" typical performance curves.


FIGURE 2. Offset Adjustment.


The INA132 can be combined with op amps to form a complete instrumentation amplifier with specialized performance characteristics. BurrBrown offers many complete high performance IAs. Products with related performances are shown at the right.

$\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$	FEATURE	SIMILIAR COMPLETE   BURR-BROWN IA
OPA27	Low Noise	INA103
OPA129	Ultra Low Bias Current (fA)	INA116
OPA177	Low Offset Drift, Low Noise	INA114,INA128
OPA2130	Low Power, FET-Input (pA)	INA111
OPA2234	Single Supply, Precision,	Low Power
OPA2237	Single Supply, Low Power,	INA122 ${ }^{(1)}$, INA118
	MSOP-8	INA1222 ${ }^{(1), ~ I N A 126 ~}{ }^{(1)}$

NOTE: (1) Available 1Q'97.


FIGURE 4. Low Power, High Output Current Precision Difference Amplifier.


FIGURE 5. Pseudoground Generator.

FIGURE 3. Precision Instrumentation Amplifier.


FIGURE 6. Differential Input Data Acquisition.


FIGURE 7. Precision Voltage-to-Current Conversion.

The difference amplifier is a highly versatile building block that is useful in a wide variety of applications. See the INA105 data sheet for additional applications ideas, including:

- Current Receiver with Compliance to Rails
- Precision Unity-Gain Inverting Amplifier
$- \pm 10 \mathrm{~V}$ Precision Voltage Reference
- $\pm 5 \mathrm{~V}$ Precision Voltage Reference
- Precision Unity-Gain Buffer
- Precision Average Value Amplifier
- Precision G = 2 Amplifier
- Precision Summing Amplifier
- Precision G = 1/2 Amplifier
- Precision Bipolar Offsetting
- Precision Summing Amplifier with Gain
- Instrumentation Amplifier Guard Drive Generator
- Precision Summing Instrumentation Amplifier
- Precision Absolute Value Buffer
- Precision Voltage-to-Current Converter with Differential Inputs
- Differential Input Voltage-to-Current Converter for Low $\mathrm{I}_{\text {OUT }}$
- Isolating Current Source
- Differential Output Difference Amplifier
- Isolating Current Source with Buffering Amplifier for Greater Accuracy
- Window Comparator with Window Span and Window Center Inputs
- Precision Voltage-Controlled Current Source with Buffered Differential Inputs and Gain
- Digitally Controlled Gain of $\pm 1$ Amplifier


[^0]:    The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

