RSQ035P03

Transistor

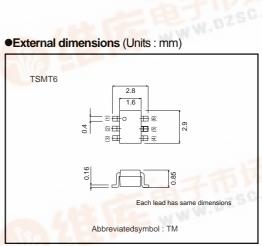
DC-DC Converter (-30V, -3.5A)

RSQ035P03

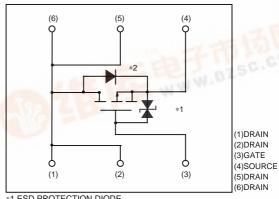
Features

- 1) Low On-resistance.(65mΩ at 4.5V)
- 2) High Power Package.
- 3) High speed switching.
- WWW.DZSC.COM 4) Low voltage drive.(4.5V)

Applications


DC-DC converter

Structure


Silicon P-channel MOSFET

Packaging specifications

Туре	Package	Taping
	Code	TR
	Basic ordering unit (pieces)	3000
RSQ035P03		0,5

●Equivalent circuit

- *1 ESD PROTECTION DIODE
- *2 BODY DIODE

● Absolute maximum ratings (Ta=25°C)

Parameter		Symbol	Limits	Unit	
Drain-source voltage		Voss	-30	V	
Gate-source voltage		Vgss	±20	V	
Drain current	Continuous	lo	±3.5	A	
	Pulsed	IDP	±14	A *1	
Source current (Body diode)	Continuous	Is	-1	A	
	Pulsed	Isp	-4	A *1	
Total power dissipation		Po	1.25	W*2	
Channel temperature		Tch	150	°C	
Range of Strage temperature		Tstg	−55~+150	°C	

^{*1} Pw≦10μs, Duty cycle≦1% *2 Mounted on a ceramic board

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Gate-source leakage	Igss	-	_	±10	μΑ	Vgs=±20V, Vps=0V		
Drain-source breakdown voltage	V(BR)DSS	-30	_	_	V	I _D =-1mA, V _G s=0V		
Zero gate voltage drain current	IDSS	-	_	-1	μΑ	VDS=-30V, VGS=0V		
Gate threshold voltage	VGS(th)	-1.0	-	-2.5	V	V _{DS} =-10V, I _D =-1mA		
Static drain-source on-state resistance	RDS(on)	-	45	65	mΩ	ID=-3.5A, VGS=-10V		
		_	65	90	mΩ	ID=-3.5A, Vgs=-4.5V		
		-	70	95	mΩ	In=-1.75A, Vgs=-4.0V		
Foward transfer admittance	Y _{fs} *	2.0	-	_	S	V _{DS} =-10V, I _D =-1.75mA		
Input capacitance	Ciss	_	780	_	pF	V _{DS} =-10V,V _{GS} =0V f=1MHz		
Output capacitance	Coss	_	180	_	pF			
Reverse transfer capacitance	Crss	_	130	_	pF			
Turn-on delay time	td(on) *	_	15	-	ns	- Ip=-1.75A		
Rise time	tr *	_	35	_	ns	V _{DD} <u></u> =−15V		
Turn-off delay time	td(off) *	_	45	_	ns	$R_{L=8.6\Omega}$ Res=10 Ω		
Fall time	tr *	_	25	-	ns			
Total gate charge	Qg	-	9.2	_	nC			
Gate-source charge	Qgs	_	2.2	_	nC	VDD≔-15V VGS=-5V ID=-3.5mA		
Gate-drain charge	Qgd	-	3.4	-	nC			
*PULSED Body diode characteristics (source-drain characteristics)								
Forward voltage	VSD	-	-	-1.2	V	Is=-1A, Vgs=0V		

Electrical characteristic curves 1000 1000 Static Drain–Source On–State Resistance $Ros(on)[m\Omega]$ -Source On–State Ros(on)[mΩ] Drain Current: -lb (A) 0. 100 Static Drain-0.01 Drain Current : -Ip[A] $Drain\ Current: -I_D[A]$ Gate-Source Voltage : -Vcs[V] Fig.2 Static Drain-Source On-State Fig.1 Typical Transfer Characteristics Resistance vs.Drain Current Fig.3 Static Drain-Source On-State Resistance vs.Drain Current 1000 Static Drain–Source On–State Resistance Resistance Resistance Static Drain-Source On-State Resistance Reverse Drain Current : -lpr[A] $R_{DS}(on)[m\Omega]$ 100 100 2.0 Drain Current : -I_□[A] Drain Current : -I_□[A] Source-Drain Voltage: -Vsp[V] Fig.6 Reverse Drain Current vs.Source-Drain Voltage Fig.4 Static Drain-Source On-State Fig.5 Static Drain-Source On-State Resistance vs.Drain-Current Resistance vs.Drain-Current 10000 Ta=25°0 f=1MHz VGS=0V -V_{GS}[V] Switching Time : t [ns] Capacitance : C [pF] Gate-Source Voltage: 100 10 L 0.01 $Drain\ Current: -I_D[A]$ $Drain-Source\ Voltage: -V {\tt DS}[V]$ Total Gate Charge : Qg[nC] Fig.7 Typical Capactitance Fig.8 Switching Characteristics Fig.9 Dynamic Input Characteristics vs.Drain-Source Voltage

Measurement circuits

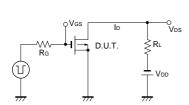


Fig.10 Switching Time Measurement Circuit

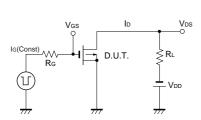


Fig.12 Gate Charge Measurement Circuit

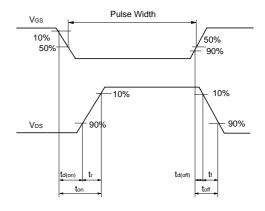


Fig.11 Switching Waveforms

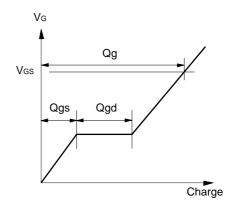


Fig.13 Gate Charge Waveforms

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

